rlenco
C RLENCO SOURCE OF166741 24/12/13 21:17:23 12097 C************************************************************************ C C PROJET : CASTEM 2000 C C NOM : RLENCO C C DESCRIPTION : Appelle par GRADI2 C C LANGAGE : FORTRAN 77 + ESOPE 2000 (avec extensions CISI) C C AUTEUR : A. BECCANTINI C C************************************************************************ C C This subroutine computes the coefficients which allow to perform C a linear exact reconstruction of each 'sommet' (vertex) value C Indeed, given the i-th sommet (V=MELSOM.NUM(1,i)), given the list C of its neighbors MLEPOI.LECT(i), we have to compute the matrix of C coefficients a(i,j) such that C C VAL(MELSOM.NUM(1,i)) = \sum_{neig1} a(i,neig1) * VAL(neig1) + C \sum_{neig2} a(i,neig2) * VALNOR(neig2) C C where neig1 is a 'CENTRE' point or a 'Dirichlet boundary condition' C point, neig2 is a 'Von Neumann boundary condition' point, VAL(j) C is the value of the function in the j-th neighbor, VALNOR(j) is C the value of grad(VAL).n is the j-th neighbor. C C C To compute these coefficients, we impose that VAL is linear with C respect to the coordinates of V and its neighbor. Then, since C there are less unknowns than equations, we use a least square C method. If the neighbor is a 'CENTRE' point or a 'Dirichlet C boundary condition' point, we impose that C C A + B (x_{neig} - x_V) + C (y_{neig} - y_V) + D (z_{neig} - z_V) C = VAL(neig) C C If the neighbor is a 'von Neumann boundary condition' point, C we impose that C C |r_{neig} - r_V| (B nx_{neig} + C ny_{neig} + D nz_{neig}) = C VALNOR(neig) * |r_{neig} - r_V| C c r = (x,y,z) c n = (nx, ny, nz) is the normal to the surface C C To determine A, B, C, D we have to solve C C MATA . tran(A, B, C, D) = tran(VAL(1), VAL(2), ... , VALNOR(j) / C (r_{j} - r_V) C C with MATA(1,*) = (1,x_1-x_V,y_1-y_V,z_1-z_V) C MATA(2,*) = (1,x_2-x_V,y_2-y_V,z_2-z_V) C ... C MATA(j,*) = (0,nx_{j}, ny_{j}, nz_{j}) C ... C C To determine a(i,neig) we have to solve a linear system (for each C neig). If the neighbor is a 'CENTRE' point or a 'Dirichlet boundary C condition' point we solve C C MATA . tran(a(i,neig), b(i,neig), c(i,neig), d(i,neig)) = e_{neig} C C with e_{neig} = tran (0,0,...,0,1,0,...) (1 in the neig position) C C If the neighbor is a 'von Neumann boundary condition' points, C we solve C C MATA . tran(a(i,neig), b(i,neig), c(i,neig), d(i,neig)) = C e_{neig} (r_{neig} - r_V) C C Since each linear system involves MATA, we have to "pseudoinvert" C it. C C**** Inputs: C C MELSOM = the 'SOMMET' meleme C MELCEN = the 'CENTRE' meleme C MELLI1 = the support of Dirichlet boundary conditions C MELLI2 = the support of von Neumann boundary conditions C INOMR = CHAMPOINT des normales aux faces C MLEPOI = list of integers. C MLEPOI.LECT(i) points to the list neighbors of C MELSOM.NUM(1,i) C C**** Output: C C MLECOE = list of integers. C C MLECOE.LECT(i) points to the MLREEL MLRCOE which C contain the a(i,neig) C IMPLICIT INTEGER(I-N) INTEGER INORM, NSOMM, INOEU, NGS, IPCOOR, IVOI, NVOI, NGV, NLV & ,NLV1,NVMAX,NVMIN,IERSVD,IERR0,NLN & ,I1,I2,I3,I4 REAL*8 XS,YS,ZS,XV,YV,ZV,DX,ERRTOL,SMAX,SMIN PARAMETER(ERRTOL=1.0D-16) CHARACTER*8 TYPE LOGICAL LOGSVD -INC PPARAM -INC CCOPTIO -INC SMCOORD -INC SMELEME -INC SMLREEL -INC SMLENTI -INC SMCHPOI INTEGER JG INTEGER N1,N2 SEGMENT MATRIX REAL*8 MAT(N1,N2) ENDSEGMENT POINTEUR MELSOM.MELEME, MLEPOI.MLENTI,MELLI1.MELEME,MELLI2.MELEME & ,MLELI1.MLENTI,MLELI2.MLENTI,MELCEN.MELEME,MLECEN.MLENTI & ,MPNORM.MPOVAL, MATA.MATRIX,MATU.MATRIX,MATV.MATRIX & ,MLRCOE.MLREEL,MLRSIG.MLREEL,MLRTRA.MLREEL & ,MTAA.MATRIX, MINTAA.MATRIX,MLRIN1.MLREEL,MLRIN2.MLREEL & ,MLRIN3.MLREEL, MLECOE.MLENTI, MLRB.MLREEL & ,MELFAC.MELEME,MLEFAC.MLENTI C C**** We create the MLENTI for the centers C IF(IERR .NE. 0)GOTO 9999 C En KRIPAD C SEGACT MELCEN C SEGINI MLECEN C C**** We create the MLENTI for the BC C IF(IERR .NE. 0)GOTO 9999 IF(IERR .NE. 0)GOTO 9999 C SEGACT MELLI1 C SEGINI MLELI1 C SEGACT MELLI2 C SEGINI MLELI2 C SEGACT MELSOM NSOMM=MELSOM.NUM(/2) JG=NSOMM SEGINI MLECOE SEGACT MLEPOI C C**** Le MPOVAL des normales C C SEGACT MPNORM C C**** We create the MLENTI for the MELFAC C IF(IERR .NE. 0)GOTO 9999 C SEGACT MELFAC C SEGINI MLEFAC C C**** Loop on the sommet to compute NVMAX C (maximum number of neighbors) C NVMAX=0 DO INOEU=1,NSOMM,1 C C******* The neighbors of NGS C MLENTI=MLEPOI.LECT(INOEU) SEGACT MLENTI NVOI=MLENTI.LECT(/1) NVMAX=MAX(NVMAX,NVOI) ENDDO C C MATA = matrix to "pseudoinvert" (NVMAX,IDIM+1) C MATU = matrix of the singular right eigenvectors of MATA C (NVMAX,IDIM+1) C MATV = matrix of the singular left eigenvectors of MATA C (IDIM+1,IDIM+1) C But in invsvd.eso, MATV dimensions are NVMAX,IDIM+1 C MLRSIG = singular values of MATA (IDIM+1) C MLRB = vector (NVMAX) C MLRB.PROG(j) = 1 if j is a center point or a 'Dirichlet C boundary condition' point C MLRB.PROG(j) = (r_j - r_V) id j is a 'von Neumann C boundary condition point. C C N.B. MATA = MATU MATSIG t(MATV) C If MATA is non singular, C inv(MATA) = MATV inv(MATSIG) t(MATU) C C MLRTRA temporary vector of invsvd.eso C NVMIN = IDIM + 1 (the most little dimension of the matrices) C N1=NVMAX N2=IDIM+1 SEGINI MATA SEGINI MATU SEGINI MATV JG=NVMAX SEGINI MLRB JG=IDIM+1 SEGINI MLRSIG SEGINI MLRTRA NVMIN=N2 C C MTAA : [t(MATA).MATA] C MINTAA : [inve(t(MATA) MATA)] C MLRIN1,2,3 : "temporary vectors" C N1=NVMIN N2=NVMIN SEGINI MTAA SEGINI MINTAA JG=NVMIN SEGINI MLRIN1 SEGINI MLRIN2 SEGINI MLRIN3 C C**** Loop on the sommet to compute the coefficient C DO INOEU=1,NSOMM,1 NGS=MELSOM.NUM(1,INOEU) IPCOOR=((NGS-1)*(IDIM+1))+1 XS=MCOORD.XCOOR(IPCOOR) YS=MCOORD.XCOOR(IPCOOR+1) IF(IDIM .EQ. 3) ZS=MCOORD.XCOOR(IPCOOR+2) C C******* The neighbors of NGS C MLENTI=MLEPOI.LECT(INOEU) NVOI=MLENTI.LECT(/1) C C******* The matrix where we store the coefficients C JG=NVOI SEGINI MLRCOE MLECOE.LECT(INOEU)=MLRCOE C C******* Loop involving the neighbors C We create the matrix to "pseudoinvert" C DO IVOI=1,NVOI,1 NGV=MLENTI.LECT(IVOI) NLV=MLECEN.LECT(NGV) NLV1=MLELI1.LECT(NGV) IF((NLV .NE. 0) .OR. (NLV1 .NE. 0))THEN C C********** NGV is a 'centre' point or a Dirichlet point C IPCOOR=((NGV-1)*(IDIM+1))+1 XV=MCOORD.XCOOR(IPCOOR) YV=MCOORD.XCOOR(IPCOOR+1) MATA.MAT(IVOI,1)=1 MATA.MAT(IVOI,2)=XV-XS MATA.MAT(IVOI,3)=YV-YS IF(IDIM.EQ.3)THEN ZV=MCOORD.XCOOR(IPCOOR+2) MATA.MAT(IVOI,4)=ZV-ZS ENDIF ELSE NLV=MLELI2.LECT(NGV) IF(NLV .EQ. 0)THEN C C**************** NO B.C. specified on this point C WRITE(IOIMP,*) 'Boundary conditions ???' GOTO 9999 ELSE IPCOOR=((NGV-1)*(IDIM+1))+1 XV=MCOORD.XCOOR(IPCOOR) YV=MCOORD.XCOOR(IPCOOR+1) DX=((XV - XS)**2)+((YV - YS)**2) IF(IDIM .EQ. 3)THEN ZV=MCOORD.XCOOR(IPCOOR+2) DX=DX+((ZV - ZS)**2) ENDIF NLN=MLEFAC.LECT(NGV) DX=DX**0.5D0 MATA.MAT(IVOI,1)=0 MATA.MAT(IVOI,2)=DX*MPNORM.VPOCHA(NLN,1) MATA.MAT(IVOI,3)=DX*MPNORM.VPOCHA(NLN,2) IF(IDIM .EQ. 3)THEN MATA.MAT(IVOI,4)=DX*MPNORM.VPOCHA(NLN,3) ENDIF ENDIF ENDIF ENDDO C C TEST C do ivoi=1,nvoi,1 C write(*,*) C & 'mata.mat(',ivoi,')=',(mata.mat(ivoi,i1),i1=1,nvmin,1) C write(*,*) 'b(',ivoi,')=',mlrb.prog(ivoi) C enddo C C C********** Now we have to invert this matrix C LOGSVD=.TRUE. IF(IERSVD.NE.0)THEN C C************* SVD decomposition of the matrix does not work C LOGSVD=.FALSE. ELSE C C************ We check the condition number of MATA C SMAX=0.0D0 DO I1=1,NVMIN,1 ENDDO SMIN=SMAX DO I1=1,NVMIN,1 ENDDO IF((SMIN/SMAX) .LT. ERRTOL)THEN LOGSVD=.FALSE. ENDIF ENDIF C C TEST C write(*,*) 'LOGSVD=.FALSE.' C LOGSVD=.FALSE. C IF(LOGSVD)THEN C C********** INVSVD worked C C MATA = MATU MATSIG t(MATV) C inv(MATA) = MATV inv(MATSIG) t(MATU) C DO I4=1,NVMIN,1 DO IVOI=1,NVOI,1 C I2=1 is the only coefficient we are interested in ENDDO ENDDO ENDDO ELSE WRITE (IOIMP,*) 'rlenco.eso' C 22 0 C Opération malvenue. Résultat douteux C C********** INVSVD does not worked C For each neighbor k we have to compute the solution C of C C t(MATA) MATA x = t(MATA) * b C C where b= \sum_l e_l \delta(k,l) = e_k C C To do that, we compute C C X_0 = [inve(t(MATA) MATA)] [t(MATA) * b] C C X_1 = X_0 + [inve(t(MATA) MATA)] [t(MATA) * b - C [t(MATA) MATA] X_0] C C C********** We compute [t(MATA) MATA] C We store it in the upper triangle of MTAA(NVMIN,NVMIN) C DO I1=1,NVMIN,1 ENDDO ENDDO DO I1=1,NVMIN,1 DO I3=1,NVOI,1 ENDDO ENDDO ENDDO C C********** We compute [inve(t(MATA) MATA)] C CHOLDC stores it in the upper trianle of MINTAA(NVMIN,NVMIN) C IF(IERR0.NE.0)THEN WRITE(IOIMP,*) 'subroutine rlenco.eso.' C 26 2 C Tache impossible. Probablement données erronées GOTO 9999 ENDIF C C********** We complete MTAA and MINTAA C DO I1=1,NVMIN,1 ENDDO ENDDO C DO IVOI=1,NVOI,1 C C************* We compute [t(MATA) . b] and we store it in MLRIN1.PROG C DO I1=1,NVMIN,1 ENDDO C C************* X_0 = [inve(t(MATA) MATA)] [t(MATA) * b] C X_0(i1) into MLRIN2.PROG(I1) C DO I1=1,NVMIN,1 ENDDO ENDDO C C************ X_1 = X_0 + [inve(t(MATA) MATA)] [t(MATA) * b - C [t(MATA) MATA] X_0] C C [t(MATA) MATA] X_0 into MLRIN3.PROG C DO I1=1,NVMIN,1 ENDDO ENDDO C C************* Now we have C [t(MATA) . b] in MLRIN1.PROG C X_0(i1) in MLRIN2.PROG(I1) C [t(MATA) MATA] X_0 in MLRIN3.PROG C C X_1(i1) in MLRCOE.MAT(i1,IVOI) C DO I1=1,1,1 C The only interesting one is I1=1 ENDDO ENDDO ENDDO ENDIF CC CC TEST C write(*,*) 'ngs =', NGS C write(*,*) 'invide',LOGSVD C write(*,*) 'nvois =',(mlenti.lect(ivoi),ivoi=1,nvoi,1) C write(*,*) 'coeff =',(mlrcoe.prog(ivoi),ivoi=1,nvoi,1) C dx=0.0D0 C do ivoi=1,nvoi,1 C dx=dx+mlrcoe.prog(ivoi) C enddo C write(*,*) 'sum=',dx MLENTI=MLEPOI.LECT(INOEU) SEGDES MLENTI MLRCOE=MLECOE.LECT(INOEU) SEGDES MLRCOE ENDDO C SEGDES MELCEN SEGSUP MLECEN C IF(MELLI1 .NE. 0) SEGDES MELLI1 IF(MELLI2 .NE. 0) SEGDES MELLI2 SEGSUP MLELI1 SEGSUP MLELI2 C SEGDES MELSOM C SEGDES MLECOE SEGDES MLEPOI C SEGSUP MATA SEGSUP MATU SEGSUP MATV SEGSUP MLRSIG SEGSUP MLRTRA SEGSUP MLRB C SEGSUP MTAA SEGSUP MINTAA SEGSUP MLRIN1 SEGSUP MLRIN2 SEGSUP MLRIN3 C SEGDES MPNORM SEGDES MELFAC SEGSUP MLEFAC C 9999 CONTINUE RETURN END
© Cast3M 2003 - Tous droits réservés.
Mentions légales