rlencf
C RLENCF SOURCE OF166741 24/12/13 21:17:23 12097 C************************************************************************ C C PROJET : CASTEM 2000 C C NOM : RLENCF C C DESCRIPTION : Appelle par GRADI2 C C LANGAGE : FORTRAN 77 + ESOPE 2000 (avec extensions CISI) C C AUTEUR : A. BECCANTINI C C************************************************************************ C C Inputs: C C MLESCF : list of SOMMET points and their CENTRE neighbors C C MATCOE : coeff. for linear exact reconstruction of MLESCF C C MLEFSC : list of FACES points and their neighbors (CENTRE and SOMMET C points) C C MACOE1 : coeff. for linear exact reconstruction of MLEFSC C C Output C C MLEFC : list of FACES points and their neighbors (CENTRE points only) C C MACOE2 : coeff. for linear exact reconstruction of MLEFC C C This subroutine computes the coefficients to compute the gradient C at intefaces with respect to the values on its neighbors. C The neighbors are 'CENTRE' points (in FACEL) ore 'SOMMET' points C (in FACEP). which allow to perform C A linear exact reconstruction is performed via a least square C method. C C**** Inputs: C C MELFL = the 'FACEL' meleme C MELFP = the 'FACEP' meleme C C**** Output: C C MLEPOI = list of integers. C MLEPOI.LECT(i) points to the list neighbors of C MELFL.NUM(2,i) C MLECOE = list of integers. C MLECOE.LECT(i) points to the matrix of coeffients to C compute the gradient C IMPLICIT INTEGER(I-N) INTEGER NBSOUS,ISOUS,NBELEM,NBNO,NVMAX,NVMIN,NFAC,IFAC,IELEM & ,NGF,NGF1,NGC1,NGC2,INOEU,NGS,IPCOOR,NVOI,IVOI,NGV & ,IERSVD,IERR0 & ,I1,I2,I3,I4 REAL*8 XF,YF,ZF, XV, YV, ZV,SMAX,SMIN,ERRTOL PARAMETER(ERRTOL=1.0D-16) LOGICAL LOGSVD -INC PPARAM -INC CCOPTIO -INC SMCOORD -INC SMELEME -INC SMLREEL -INC SMLENTI -INC SMCHPOI INTEGER JG INTEGER N1,N2 SEGMENT MATRIX REAL*8 MAT(N1,N2) ENDSEGMENT POINTEUR MELFL.MELEME, MELFP.MELEME, MLEPOI.MLENTI,MLECOE.MLENTI & , MATA.MATRIX,MATU.MATRIX,MATV.MATRIX & ,MATCOE.MATRIX,MLRSIG.MLREEL,MLRTRA.MLREEL & ,MTAA.MATRIX, MINTAA.MATRIX,MLRIN1.MLREEL,MLRIN2.MLREEL & ,MLRIN3.MLREEL,MLEFP.MLENTI,MELFP1.MELEME C SEGACT MELFP C C C**** En 2D MELFP est un maillage elementaire C En 3D pas à priori C -> MLEFP contains the list of LISOUS C NBSOUS=MELFP.LISOUS(/1) C NBSOUS=0 fais un peux chier! JG=MAX(NBSOUS,1) SEGINI MLEFP IF(NBSOUS .EQ. 0)THEN MLEFP.LECT(1)=MELFP ELSE DO ISOUS=1,NBSOUS,1 MLEFP.LECT(ISOUS)=MELFP.LISOUS(ISOUS) ENDDO ENDIF SEGDES MELFP SEGACT MELFL NFAC=MELFL.NUM(/2) JG=NFAC SEGINI MLEPOI SEGINI MLECOE C C**** Loop on the faces to compute NVMAX C (maximum number of neighbors) C NBSOUS=MLEFP.LECT(/1) NVMAX=0 DO ISOUS = 1, NBSOUS, 1 MELFP1=MLEFP.LECT(ISOUS) SEGACT MELFP1 NBELEM=MELFP1.NUM(/2) C C The ISOUS elementary meleme of 'FACEP' has NBELEM elements C which contain NBNO sommets and one point face. Each face has C NBNO 'SOMMET' neighbors and 2 'CENTRE' neighbors. C ENDDO C C MATA = matrix to "pseudoinvert" (NVMAX,IDIM+1) C MATU = matrix of the singular right eigenvectors of MATA C (NVMAX,IDIM+1) C MATV = matrix of the singular left eigenvectors of MATA C (IDIM+1,IDIM+1) C But in invsvd.eso, MATV dimensions are NVMAX,IDIM+1 C MLRSIG = singular values of MATA (IDIM+1) C C N.B. MATA = MATU MATSIG t(MATV) C If MATA is non singular, C inv(MATA) = MATV inv(MATSIG) t(MATU) C C MLRTRA temporary vector of invsvd.eso C NVMIN = IDIM + 1 (the most little dimension of the matrices) C N1=NVMAX N2=IDIM+1 SEGINI MATA SEGINI MATU SEGINI MATV JG=IDIM+1 SEGINI MLRSIG SEGINI MLRTRA NVMIN=N2 C C MTAA : [t(MATA).MATA] C MINTAA : [inve(t(MATA) MATA)] C MLRIN1,2,3 : "temporary vectors" C N1=NVMIN N2=NVMIN SEGINI MTAA SEGINI MINTAA JG=NVMIN SEGINI MLRIN1 SEGINI MLRIN2 SEGINI MLRIN3 C C**** Loop on faces to compute the coefficient C NBSOUS=MLEFP.LECT(/1) IFAC=0 DO ISOUS = 1, NBSOUS, 1 MELFP1=MLEFP.LECT(ISOUS) NBELEM=MELFP1.NUM(/2) DO IELEM=1,NBELEM,1 IFAC=IFAC+1 NGF1=MELFL.NUM(2,IFAC) NGC1=MELFL.NUM(1,IFAC) NGC2=MELFL.NUM(3,IFAC) IF(NGF .NE. NGF1)THEN WRITE(IOIMP,*) 'Subroutine rlencf.eso' GOTO 9999 ENDIF IF(NGC1 .EQ. NGC2)THEN ELSE ENDIF C C********** We create the list of neighbors. C SEGINI MLENTI MLEPOI.LECT(IFAC)=MLENTI C C********** We create the matrix of coefficients. C N2=JG N1=NVMIN SEGINI MATCOE MLECOE.LECT(IFAC)=MATCOE C C********** We fill the list of neighbors. C NGS=MELFP1.NUM(INOEU,IELEM) MLENTI.LECT(INOEU)=NGS ENDDO ENDDO SEGDES MELFP1 ENDDO C C**** Test for MLEPOI C C do ifac=1,nfac,1 C mlenti=mlepoi.lect(ifac) C nbno=mlenti.lect(/1) C write(*,*) 'ngf=',melfl.num(2,ifac) C write(*,*) 'nvoi=',nbno C write(*,*) (mlenti.lect(inoeu),inoeu=1,nbno,1) C enddo C C**** We have to fill the matrix coefficient C NFAC=MELFL.NUM(/2) DO IFAC=1,NFAC,1 NGF=MELFL.NUM(2,IFAC) IPCOOR=((NGF-1)*(IDIM+1))+1 XF=MCOORD.XCOOR(IPCOOR) YF=MCOORD.XCOOR(IPCOOR+1) IF(IDIM .EQ. 3) ZF=MCOORD.XCOOR(IPCOOR+2) C C******* The neighbors of NGF C MLENTI=MLEPOI.LECT(IFAC) NVOI=MLENTI.LECT(/1) C C******* The matrix where we store the coefficients C MATCOE=MLECOE.LECT(IFAC) C C******* Loop involving the neighbors C We create the matrix to "pseudoinvert" C DO IVOI=1,NVOI,1 NGV=MLENTI.LECT(IVOI) IPCOOR=((NGV-1)*(IDIM+1))+1 XV=MCOORD.XCOOR(IPCOOR) YV=MCOORD.XCOOR(IPCOOR+1) MATA.MAT(IVOI,1)=1 MATA.MAT(IVOI,2)=XV-XF MATA.MAT(IVOI,3)=YV-YF IF(IDIM.EQ.3)THEN ZV=MCOORD.XCOOR(IPCOOR+2) MATA.MAT(IVOI,4)=ZV-ZF ENDIF ENDDO C C********** Now we have to invert this matrix C LOGSVD=.TRUE. IF(IERSVD.NE.0)THEN C C************* SVD decomposition of the matrix does not work C LOGSVD=.FALSE. ELSE C C************ We check the condition number of MATA C SMAX=0.0D0 DO I1=1,NVMIN,1 ENDDO SMIN=SMAX DO I1=1,NVMIN,1 ENDDO IF((SMIN/SMAX) .LT. ERRTOL)THEN LOGSVD=.FALSE. ENDIF ENDIF C CC TEST C write(*,*) 'LOGSVD=.FALSE.' C LOGSVD=.FALSE. C IF(LOGSVD)THEN C C********** INVSVD worked C C MATA = MATU MATSIG t(MATV) C inv(MATA) = MATV inv(MATSIG) t(MATU) C DO I4=1,NVMIN,1 DO IVOI=1,NVOI,1 C I2=1 is the only coefficient we are not interested C in. But we computed it to verify that C sum_ivoi MATCOE.MAT(ivoi,1) = 1 C ENDDO ENDDO ENDDO ELSE WRITE (IOIMP,*) 'rlencf.eso' C 22 0 C Opération malvenue. Résultat douteux C C********** INVSVD does not worked C For each neighbor k we have to compute the solution C of C C t(MATA) MATA x = t(MATA) * b C C where b= \sum_l e_l \delta(k,l) = e_k C C To do that, we compute C C X_0 = [inve(t(MATA) MATA)] [t(MATA) * b] C C X_1 = X_0 + [inve(t(MATA) MATA)] [t(MATA) * b - C [t(MATA) MATA] X_0] C C C********** We compute [t(MATA) MATA] C We store it in the upper triangle of MTAA(NVMIN,NVMIN) C DO I1=1,NVMIN,1 ENDDO ENDDO C DO I1=1,NVMIN,1 DO I3=1,NVOI,1 ENDDO ENDDO ENDDO C C********** We compute [inve(t(MATA) MATA)] C CHOLDC stores it in the upper trianle of MINTAA(NVMIN,NVMIN) C IF(IERR0.NE.0)THEN WRITE(IOIMP,*) 'subroutine rlencf.eso.' C 26 2 C Tache impossible. Probablement données erronées GOTO 9999 ENDIF C C********** We complete MTAA and MINTAA C DO I1=1,NVMIN,1 ENDDO ENDDO C DO IVOI=1,NVOI,1 C C************* We compute [t(MATA) . b] and we store it in MLRIN1.PROG C DO I1=1,NVMIN,1 ENDDO C C************* X_0 = [inve(t(MATA) MATA)] [t(MATA) * b] C X_0(i1) into MLRIN2.PROG(I1) C DO I1=1,NVMIN,1 ENDDO ENDDO C C************ X_1 = X_0 + [inve(t(MATA) MATA)] [t(MATA) * b - C [t(MATA) MATA] X_0] C C [t(MATA) MATA] X_0 into MLRIN3.PROG C DO I1=1,NVMIN,1 ENDDO ENDDO C C************* Now we have C [t(MATA) . b] in MLRIN1.PROG C X_0(i1) in MLRIN2.PROG(I1) C [t(MATA) MATA] X_0 in MLRIN3.PROG C C X_1(i1) in MATCOE.MAT(IVOI,i1) C DO I1=1,IDIM+1,1 C The only unuseful one is I1=1 MATCOE.MAT(I1,IVOI)=MATCOE.MAT(I1,IVOI)+ ENDDO MATCOE.MAT(I1,IVOI)=MATCOE.MAT(I1,IVOI)+ ENDDO ENDDO ENDIF CC CC TEST C write(*,*) 'ngf =', NGF C write(*,*) 'invide',LOGSVD C write(*,*) 'nvois =',(mlenti.lect(ivoi),ivoi=1,nvoi,1) C write(*,*) 'coeff(1) =',(matcoe.mat(1,ivoi),ivoi=1,nvoi,1) C write(*,*) 'coeff(2) =',(matcoe.mat(2,ivoi),ivoi=1,nvoi,1) C write(*,*) 'coeff(3) =',(matcoe.mat(3,ivoi),ivoi=1,nvoi,1) C if(idim.eq.3) write(*,*) 'coeff(4)=', C & (matcoe.mat(4,ivoi),ivoi=1,nvoi,1) C xv=0.0D0 C do ivoi=1,nvoi,1 C xv=xv+matcoe.mat(1,ivoi) C enddo C write(*,*) 'sum=',xv CC MLENTI=MLEPOI.LECT(IFAC) SEGDES MLENTI MATCOE=MLECOE.LECT(IFAC) SEGDES MATCOE ENDDO C SEGDES MATCOE SEGDES MLEPOI C SEGDES MELFL SEGSUP MLEFP C SEGSUP MATA SEGSUP MATU SEGSUP MATV SEGSUP MLRSIG SEGSUP MLRTRA C SEGSUP MTAA SEGSUP MINTAA SEGSUP MLRIN1 SEGSUP MLRIN2 SEGSUP MLRIN3 C 9999 CONTINUE RETURN END
© Cast3M 2003 - Tous droits réservés.
Mentions légales