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Multi-physics modeling of concrete behavior

Early ages behavior

Aging

Accident
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What is the initial HTM state of the specimen?

Initial idea:

Sequential solution

Problems 

 Early-age / aging solution no totally 

compatible as initial condition;

 Not practical methodology. Casting

Time of 

accident

Proposition of an unified formulation

S. Dal Pont

Alternative:

Development of a unified mathematical model accounting for early age, aging and high 

temperature behavior; The task has been realized with care (no just merging the two codes) to 

obtain a compact and consistent physical model for concrete
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Anhydrous grain 

Hydration shell 

Capillary pore

Hydrated 
grain 

The multiphase system

 Definition of phases & governing equations
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Representative Elementary Volume (REV)

Micro → Macro approach via averaging theories

3 PHASES ARE CONSIDERED

1 Solid phase, (s) formed by
 Anhydrous cement: Cs

 Aggregates: As

 Hydrates: Hs

Permeated by

1 Liquid phase (l): liquid water

1 Gaseous phase (g) mixture of:
 Dry air (Ag)

 Water vapour, (Wg)

Reference approach of

Gawin,    Pesavento & Schrefler
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Representative Elementary Volume (REV)

Micro → Macro approach via averaging theories

3 PHASES ARE CONSIDERED

1 Solid phase, (s) formed by
 Anhydrous cement: Cs

 Aggregates: As

 Hydrates: Hs

Permeated by

1 Liquid phase (l): liquid water

1 Gaseous phase (g) mixture of:
 Dry air (Ag)

 Water vapour, (Wg)

1
s g l    
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s l l g g

S S        

Porosity & Saturation:

Volume Fractions occupied by the three phases:

1
g l

S S 
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Hypotheses and adopted physical laws

 Gaseous phase is a binary mixture of vapour and dry air ;

 The gaseous phase, vapour and dry air are perfect gazes ;

 Dalton’s law is assumed valid: pgA + pgW = pg ;

 Clapeyron law is used (Kelvin’s eqn not suitable due to fluctuations of pg)
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Governing equations

Primary variables:  pg pc T   u

Int. variables: Г D

Enthalpy balance eqn

Mass balance eqs (water species, dry air)

Linear momentum balance equation:
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 Unified model for hydration /  fire dehydration;

 Explicit introduction of Powers model. This reduce model 

complexity and parameters;

 New retention curve accounting for changes of microstructure and 

water surface tension;

 Autogenous and drying shrinkage finely computed with a sole 

constitutive model based on effective stress principle;

 Mechanical viscoelastic-damage model

Originalities with respect to the reference model of Gawin et al. 



1010
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 New retention curve accounting for changes of microstructure and 

water surface tension;
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constitutive model based on effective stress principle;

 Mechanical viscoelastic-damage model



 The hydration degree is an internal variable of the model 

Unified model for hydration / fire dehydration
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The hydration & dehydration model
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pc – Sl relationship 

 An unified eqn for a reliable coupling between hydrates formation/degradation & water physics

pl

pg
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pc – Sl relationship: the dehydration process

Effect of solid cement matrix dehydration

Effect of temperature on surface tension of water

Extension of Van Genuchten model

(in which E0 = 1 and a = a0 = const.)

Giannuzzi (2000) - ENEA private communication

Previous law
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Big advantage: 

irreversibility of matrix 

dehydration properly 

accounted 



 Accounting for hydration degree and hygro-thermal strains 

Mechanical viscoelastic-damage model

E
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Biot’s effective stress: 

E
kbc1

ηbc1

ηbc2 ηdc

basic creep drying creep

Elasticity Viscosity
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Biot’s effective stress: 
B s

p t t 1

 1 D t t

is the real stress

(in the sense of 

damage mechanics):
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Shrinkage computed consistently 

with the effective stress principle of 

porous media mechanics.
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The damage model
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The damage model

L = 38 cm

H
 =

 1
0

 c
m

c = 8 cm

a = 5 cm

Four points bending test
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Applications cases

• Modeling of a repaired beam

• Wall exposed to high temperature



EA repair 
sealed

drying

Autogenous 
shrinkage

Important for low w/c 
(e.g. UHPC)

+

-

+

Substrate 

At early age water 

adsorption by the 

substrate

A coactive stress 
field arises 

Reference
A multiphysics model for concrete at 

early age applied to repairs problems

G. Sciumè et al. 2013
Engineering Structures

Formworks 
removed: drying

0     end curing
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Modeling of a repaired beam



Cracking at 
interface

Surface cracking

JA 
réparation 
projetée

Structure dans 
l’environnement

séchage

0     fin cure 

Reference
A multiphysics model for concrete at 

early age applied to repairs problems

G. Sciumè et al. 2013
Engineering Structures
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drying

Substrate 

Modeling of a repaired beam



Three identical reinforced beams* are considered. Two of these beams, after the

hydrodemolition of 30 mm of the upper part, had been repaired: one using the ordinary

concrete (OC) and the other using the ultra-high performance fiber reinforced

concrete (UHPC). The third beam is the reference specimen.

*These repaired beams are real cases analyzed experimentally by Bastien Masse (2010).
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Modeling of a repaired beam
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Modeling of a repaired beam



5 days 

30 days 

120 days Beam repaired using UHPC

Damage localized at the 

interface

Beam repaired using OC

Diffuse damage 

+

localized damage at interface

Damage evolution
Damage at 5 days, at 30 days and at 120 days after the repair of two of the beams .
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Modeling of a repaired beam
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3-points bending test
Force/strain, force/displacement and crack opening.

Depl. Imp. = 15 mm
Experimental crack pattern

Bastien Masse 2010

Force versus averaged strain 
of the compressed fiber (a); 
force versus displacement 
curves (numerical results) (b); 
crack width (c).

(c)

(a) (b)

Modeling of a repaired beam



Regarding the crack opening (generalization of OUVFISS) 

Sciumè G., Benboudjema F. (2017) A viscoelastic Unitary 

Crack-Opening strain tensor for crack width assessment 

in fractured concrete structures. MECHANICS OF TIME-

DEPENDENT MATERIALS, 21(2): 223–243
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What is the initial HTM state of the specimen?

Initial idea:

Sequential solution

Problems 

 Early-age / aging solution no totally 

compatible as initial condition;

 Not practical methodology.
Casting

Time of 

accident

Concrete wall exposed to high temperature



Concrete wall exposed to high temperature

LOW RATE HEATING (2 K/MIN) FOR A 60-CM WALL

 A 1-dimensional case is simulated numerically to analyse and quantify the 

impact of age on the computed results; 

 A 60-cm wall exposed from both sides to heating is modelled;

 The concrete is the OC adopted for the COST Action TU1404 benchmark, its 

water to cement ratio is of 0.45.

60 cm



Concrete wall exposed to high temperature

10 years of drying

3 days

3 years of drying

1 year of drying

Sealed



Concrete wall exposed to high temperature

10 years of drying

3 days

3 years of drying

1 year of drying

Sealed



Concrete cylinder exposed to high temperature

Thermo-hygro-chemical Model of Concrete - From Curing to HighTemperature Behavior

G. Sciumè, M. H. Moreira, S. Dal Pont* (2023) submitted



Conclusions 

S. Dal Pont

ANR MULTI-FIRE

Modèle bientôt disponible sur Cast3M : 

 Partie THC : matériau dans la formulation THERMO-HYDRIQUE

 Partie MEC : évolution de l’actuel FLUTRA;
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