Simulation numérique des positions de soudage dans le procédé à l'arc TIG

Minh Chien NGUYEN^{1,3,*}, Olivier ASSERIN¹, Stéphane GOUNAND¹, Philippe GILLES² et Marc MEDALE³

¹CEA Saclay, DEN, DANS, DM2S, F-91191, Gif-sur-Yvette, France
 ²AREVA NP, F-92084, Paris La Défense, France
 ³Aix Marseille Université, IUSTI, UMR 7343 CNRS, F-13453, Marseille, France (Aix*Marseille Université
 *minhchienxf@gmail.com

le 27 novembre 2015

Contexte et enjeux

PWR Reactor Vessel Head ©NRC

L'industriel

Il s'agit d'accroître la **productivité** par :

- l'amélioration de la **performance** du process (optimisation de la gamme d'assemblage)
- la réduction des coûts (moins de mise au rebus)

Le soudage

- intervient dans nombreux secteurs (aéronautique, **nucléaire**, automobile . . .)
- garantir la qualité, la fiabilité ...
 - \rightarrow procédé à l'arc **Tungsten Inert Gas**

PSA PEUGEOT CITROËN

Procédé de soudage à l'arc TIG

Procédé Tungsten Inert Gas (TIG)

Modélisation du procédé TIG

Soudage TIG

- électrode non fusible
- paramètres d'entrée : tension, intensité, vitesse de défilement, hauteur d'arc
- paramètres de sortie : forme du bain de soudage, écoulement, température

Défis de simulation

Différents jeux d'assemblage

Positions de soudage

Métal d'apport

Nombreux phénomènes physiques

Club Cast₃M – 2015

Approche & Objectifs

- les données d'entrée sont les paramètres opératoires du procédé : modèle direct
- permet de limiter le nombre d'expériences préalables

Modèle bain 3D

Objectifs

- effet des paramètres opératoires
- phénomène électromagnétique
- positions de soudage
- apport de matière
- logiciel WPROCESS (MUSICAS)

Sommaire

1 Modèle

- Choix du modèle physique
- Équations à résoudre
- Modèle numérique
- 2 Comparaison à l'expérience
- 3 Résultats et discussion
 - Influence de l'effet Marangoni
 - Bilan des puissances mécanique et thermique
 - Positions de soudage
- 4 Conclusions & Perspectives

Modèle : Modèle physique (I)

Phénomènes physiques pris en compte [Brochard, 2009], [Kong, 2012]

Modèle : Principales hypothèses (II)

- Régime stationnaire
- Fluide Newtonien, écoulement incompressible et laminaire
- Approximation de Boussinesq
- Forme gaussienne pour les distributions de sources
- Vitesse de défilement constante, repère lié à la source pour écrire les équations
- Force de cisaillement non prise en compte
- Phase solide : équations de l'énergie et de l'électromagnétisme
- Phase liquide : toutes les équations

Modèle : Équations de conservation (III)

Modèle mathématique

• Navier-Stokes incompressible et énergie :

$$\begin{aligned} \nabla \cdot \boldsymbol{u} &= 0 \\ \rho(\boldsymbol{\nabla} \boldsymbol{u}) \cdot (\boldsymbol{u} - \boldsymbol{u}_{\mathsf{s}}) &= -\nabla p + \boldsymbol{\nabla} \cdot \mu(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla}^{\mathsf{t}} \boldsymbol{u}) + \boldsymbol{f}_{\mathsf{Bou}} + \boldsymbol{f}_{\mathsf{Lor}} + \boldsymbol{f}_{\mathsf{Ext}} \\ \rho(\boldsymbol{\nabla} h) \cdot (\boldsymbol{u} - \boldsymbol{u}_{\mathsf{s}}) &= \boldsymbol{\nabla} \cdot \lambda \nabla T + s_{\mathsf{Joule}} \end{aligned}$$

- Électromagnétisme :
 - densité de courant $oldsymbol{j}$ $(oldsymbol{j}=-\sigma
 abla\phi)$

$$\nabla \cdot (-\sigma \nabla \phi) = 0$$

- induction magnétique $oldsymbol{B}$ $(oldsymbol{B}=
abla imes oldsymbol{A})$

$$-\Delta \boldsymbol{A} = \mu_0 \boldsymbol{j}$$

Club Cast $_{\Im}M - 2015$

Transparent 10/28

Modèle : Équation de la surface déformée (IV)

• Surface déformée

$$-p + \left(\mu(\nabla u + \nabla^{t} u) \cdot n\right) \cdot n + \rho g(x \sin \alpha_{1} \cos \alpha_{2} + y \sin \alpha_{1} \sin \alpha_{2} + z \cos \alpha_{1})$$
$$= \frac{\gamma(T, a_{k})}{R_{1}(x, y) + R_{2}(x, y)} + f_{Arc} \cdot n$$

• Valeurs des angles α_1 et α_2

Position	1G	2G	3GD	3GM	4G
α_1	0°	90°	90°	-90°	180°
α_2	0°	90°	0°	0°	0°

Principales positions de soudage

Modèle : Méthode numérique (V)

Difficultés du problème

- Non-linéarité du terme convectif de l'équation de Navier-Stokes
- Non-linéarité du terme de perte par rayonnement de l'équation de l'énergie
- Non-linéarité thermique due au changement de phase solide liquide
- Non-linéarité géométrique due au changement de phase et à la surface libre

Problème non-linéaire

- Méthode itérative découplée de type Newton-Raphson approché
- Code de calcul aux éléments finis CastaM [CastaM, 2015]

Modèle : Discrétisation et procédure numérique (VI)

Discrétisation

- \mathbb{Q}_2 (hexaèdres) pour la vitesse d'écoulement \boldsymbol{u}
- \mathbb{Q}_2 (quadrangles) pour la position de la surface h_z
- \mathbb{Q}_1 (hexaèdres) pour les autres variables p, h, T, ϕ, B, A

Procédure numérique

Conditions initiales

répéter

 $i \longleftarrow i+1$

Construction du maillage fluide Calcul des équations électromagnétiques Calcul des équations de Navier-Stokes Calcul du déplacement de la surface libre Calcul de l'équation de l'énergie Mise à jour des coefficients dépendant de Tsi $\delta_{inc} = ||(\delta u, \delta h_z, \delta T)|| < \delta_{conv}$ alors $\alpha \leftarrow \min(\alpha \times f_{\alpha}, 1)$ (\nearrow forces motrices) fin si

jusqu'à ce que $(\delta_{inc} < \delta_{conv}$ et $\alpha = 1)$ ou $i > i_{max}$

1 Modèle

- Choix du modèle physique
- Équations à résoudre
- Modèle numérique

- 3 Résultats et discussion
 - Influence de l'effet Marangoni
 - Bilan des puissances mécanique et thermique
 - Positions de soudage

4 Conclusions & Perspectives

Validation : Comparaison à l'expérience

10 ppm (gauche) et 280 ppm (droite) de soufre avec le modèle de Sahoo (S) et de Mills (M)

[S] (ppm)	10		280	
Bain fondu (mm)	Larg	Péné	Larg	Péné
Expérience (K)	9,4±0,4	1,7±0,2	9,8±0,4	2,1±0,2
Écart (<mark>S</mark> /K)	0,0 %	10,6 %	3,7 %	11,4 %
Écart (M/K)	0,2 %	7,1 %	2,9 %	1,0 %

• Expériences [Koudadje, 2013]

→ Notre modèle est capable de prédire des grandeurs d'intérêts du soudage TIG

 \longrightarrow La fidélité de la prédiction est fortement dépendante du modèle de tension de surface

Sommaire

1 Modèle

- Choix du modèle physique
- Équations à résoudre
- Modèle numérique
- 2 Comparaison à l'expérience
- 3 Résultats et discussion
 - Influence de l'effet Marangoni
 - Bilan des puissances mécanique et thermique
 - Positions de soudage

4 Conclusions & Perspectives

Transparent 16/28

Résultats : Influence de la quantité de soufre (I)

10 ppm et 300 ppm de soufre

- $\bullet \ 10 \, ppm$ de [S] \longrightarrow écoulement centrifuge
- 300 ppm de [S] \longrightarrow apparition d'écoulement centripète
- Augmentation de 10 ppm à 300 ppm de [S]
- $\longrightarrow\,$ pénétration \uparrow , longueur \downarrow , température maximale $\uparrow\,$

Résultats : Bilan des puissances mécaniques (II)

Description des puissances	Bas soufre (10 ppm)	Haut soufre (300 ppm)
Puissance de la force de Marangoni	$3,04 imes10^{-4}$	$1,12 imes10^{-4}$
$-\int_{\partial\Omega_{Mar}}\frac{\partial\gamma}{\partial T}\nabla_{s}T\cdot\boldsymbol{u}d\partial\Omega_{Mar}$		
Puissance de la force visqueuse	$-2,\!90 imes10^{-4}$	$-1,04 imes10^{-4}$
$-\int_{\Omega} \mu\left(oldsymbol{ abla} oldsymbol{u} + oldsymbol{ abla}^{t} oldsymbol{u} ight) : oldsymbol{ abla} oldsymbol{d} \Omega$		
Puissance de la force d'extinction des vitesse	s $-5,92 imes10^{-6}$	$-1,\!11 imes10^{-6}$
$\int_{\Omega} -c(1-f_{I}) oldsymbol{u} \cdot oldsymbol{u} d\Omega$		
Puissance de la force de convection	$-5,\!11 imes10^{-6}$	$-3,72 imes10^{-6}$
$-\int_{\Omega}\rho(\boldsymbol{\nabla}\boldsymbol{u})\cdot(\boldsymbol{u}-\boldsymbol{u}_{s})\cdot\boldsymbol{u}d\Omega$		
Puissance de la force électromagnétique	$-3,\!81 imes10^{-6}$	$-3,03 imes10^{-6}$
$\int_{\Omega} (oldsymbol{j} imes oldsymbol{B}) \cdot oldsymbol{u} d\Omega$		
Puissance de la force de flottabilité	$4,48 imes10^{-8}$	$7,57 imes10^{-9}$
$\int_{\Omega} ho oldsymbol{g} eta \left(T - T_{réf} ight) \cdot oldsymbol{u} d\Omega$		
Puissance de la force de pression	0,00	0,00
$\int_{\Omega} p abla \cdot oldsymbol{u} \mathrm{d} \Omega$		
Bilan des puissances (W)	$-1,29 imes10^{-7}$	$-4,49 imes 10^{-8}$

Résultats : Bilan des puissances thermiques (III)

Description des puissances	Bas soufre (10 ppm)	Haut soufre (300 ppm)
Source de chaleur	612,00	612,00
$\int_{\partial \Omega_{Sur}} \frac{UI\eta}{2\pi\sigma_{q}^2} \exp\left(-\frac{r^2}{2\sigma_{q}^2}\right) d\partial \Omega_{Sur}$		
Pertes par diffusion	-441,95	-440,07
$\int_{\partial\Omega_{T=T_0}} -\lambda \nabla T \mathrm{d} \partial\Omega_{T=T_0}$		
Pertes par transport	-137,74	$-137,\!66$
$-\int_{\Omega} ho(abla h) \cdot (oldsymbol{u} - oldsymbol{u}_{s}) d\Omega$		
Pertes par rayonnement	-27,89	-29,85
$-\int_{\partial\Omega_{\mathrm{Ray}}}\epsilon\sigma_{\mathrm{B}}\left(T^{4}-T_{\infty}^{4} ight)\mathrm{d}\partial\Omega_{\mathrm{Ray}}$		
Pertes par convection en surface	-6,54	-6,51
$-\int_{\partial\Omega_{\rm Cvs}}h_{\rm C}\left(T-T_{\infty}\right){\rm d}\partial\Omega_{\rm Cvs}$		
Effet Joule	2,12	2,11
$\int_{\Omega} oldsymbol{j} \cdot oldsymbol{E} d\Omega$		
Bilan des puissances (W)	$4,14 imes 10^{-3}$	$2,09 imes10^{-2}$

Transparent 19/28

Résultats : Positions de soudage – 1G & 4G (IV)

Champ de température (K) et forme du bain liquide en position à plat (1G) et au plafond (4G)

Résultats : Positions de soudage – 1G & 4G (V)

Comparaison de la forme du bain entre les positions à plat et au plafond

 \longrightarrow Les formes de bain dans des cas 1G et 4G sont assez semblables

Club Cast₃M – 2015

Club Cast₃M – 2015

Résultats : Positions de soudage – 3GD & 3GM (VII)

 \longrightarrow 3GD : une déformation convexe de la surface libre sous la source

 \longrightarrow 3GM : la pénétration est maximale

(tendance similaire au cours du soudage MAG [Kumar, 2007])

Résultats : Positions de soudage – 2G (VIII)

- → on utilise un domaine modélisant toute la plaque
- → la déformation est clairement asymétrique autour de la position de l'électrode

А

Club Cast₃M – 2015

Résultats : Écoulement dans le bain liquide (IX)

 \rightarrow toutes les positions donnent le même ordre de grandeur de vitesse max. de 0,20 m·s⁻¹ \rightarrow le sens de l'écoulement dans le bain n'est pas influencé par la position de soudage

Sommaire

1 Modèle

- Choix du modèle physique
- Équations à résoudre
- Modèle numérique
- 2 Comparaison à l'expérience
- 3 Résultats et discussion
 - Influence de l'effet Marangoni
 - Bilan des puissances mécanique et thermique
 - Positions de soudage
- 4 Conclusions & Perspectives

Conclusions & Perspectives de développement

- les simulations des différentes conditions opératoires permettent de bien reproduire les résultats de la littérature;
- bon accord entre la simulation et l'expérience en soudage à plat ;
- le modèle permet d'accéder à l'effet de la position de soudage :
 - les positions verticale et en corniche influencent nettement la forme du bain de fusion ;
 - la gravité influence faiblement la forme du bain pour la position au plafond ;
 - la déformation du bain de soudage est asymétrique autour de la position de l'électrode pour la position en corniche.
- la prise en compte du couplage arc-bain permettra d'évaluer l'influence de la déformation de la surface libre sur les écoulements dans le plasma d'arc ;
- l'amélioration du modèle d'apport de matière (numérique : convergence; physique : mouillage, transfert d'énergie) permettra de traiter une configuration réaliste de soudage.

Bibliographie

[Cast3M, 2015] CEA Saclay. Téléchargeable sur http://www-cast3m.cea.fr/, 2015.

[Kumar, 2007] A. Kumar and T. DebRoy. *Metallurgical and Materials Transactions A*, 38(3) :506–519, 2007.

[Brochard, 2009] M. Brochard. *Modèle couplé cathode-plasma-pièce en vue de la simulation du procédé de soudage à l'arc TIG*. PhD thesis, Univesité de Province – CEA, 2009.

[Kong, 2012] X. Kong. *Modélisation 3D d'écoulement avec surface libre pour le soudage à l'arc TIG*. PhD thesis, École Nationale d'Ingénieurs de Saint-Étienne – CEA, 2012.

[Koudadje, 2013] K. Koudadje. Étude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers. PhD thesis, Université d'Aix-Marseille – EDF, 2013.

[Nguyen, 2015] M. C. Nguyen. *Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG*. PhD thesis, Univesité d'Aix-Marseille – CEA, 2015.

Merci de votre attention.

Club Cast₃M – 2015