DE LA RECHERCHE À L'INDUSTRIE

SIMULATIONS OF SFR NEUTRONIC TRANSIENTS FOR CHOSEN MECHANICAL SCENARIOS.

CLUB CAST3M 2015

Grzegorz KĘPISTY^{1,2}

¹CEA, DEN, DM2S, SERMA ²AGH University, Krakow, Poland

www.cea.fr

INTRODUCTION

- The aspects studied during my internship in CEA Saclay will be presented.
 - 2 major topics are involved:
 - Methodology for coupling of mechanical and neutronic simulations (deformed geometry).
 - Selected mechanical excitation scenarios applied to the test fast core model and corresponding neutron responses.

Mechanical part \rightarrow Cast3M,

neutronic calculation \rightarrow Cast3M Neutronic Tool (by Cyril PATRICOT)

PURPOSE OF THE STUDY

Sodium-cooled Fast Reactor is an example of nuclear system operating on neutron flux spectrum and belonging to Gen4 designs.

Compact cores are relatively sensitive to geometrical deformations, that is why tools for neutronic-mechanical coopling are important.

Our attention is focused on the reactor core model which undergoes various mechanical scenarios of short timescale (<1 s).

- I. Mechanical calculation
 - I.1. Numerical and physical model
 - I.2. Mechanical test scenarios
- **II.** Neutronic simulation
 - **II.1.** Description of diffusion neutron solver
 - **II.2.** Results power evolution in system
- **III.** Summary and prospects for the upcomming studies

- I. Mechanical calculation
 - I.1. Numerical and physical model
 - I.2. Mechanical test scenarios
- **II.** Neutronic simulation
 - **II.1.** Description of diffusion neutron solver
 - **II.2.** Results power evolution in system
- **III.** Summary and prospects for the upcomming studies

- The considered geometry comprises a beam of assemblies located on the diagrid.
- The core is surrounded by the lateral neutronic protection (PNL) and immersed in sodium coolant (at rest).

6 fluid elements

Beam element

Coupling between the fluid and structure degrees of freedom

- The system is modeled using finite elements method (FEM).
- Structures are treated as hexagonal bundle of beams that may collide (+impact stiffness).
- The behavior of the structures takes into account behavior of coolant \rightarrow Fluid-Structure Interaction (FSI).
- Perfect fluid + little displacements \rightarrow Linear Euler Eqations

$$\rho \overrightarrow{X_L} = -\overrightarrow{\nabla} \mathbf{P}$$
$$P = -\rho c^2 di v \overrightarrow{X_L}$$
$$\overrightarrow{V_L} \cdot \overrightarrow{n} = \overrightarrow{V_S} \cdot \overrightarrow{n}$$

- Dissipation of fluid energy \rightarrow Rayleigh damping.
- Homogenization of fluid \rightarrow reduced size of the problem.
- Displacements and rotation only in XY direction. Grzegorz KEPISTY | PAGE 7

NUMERICAL AND PHYSICAL MODEL (3)

Meshes of fluid

- Numerical equations derived in (U,P,ϕ) formulation.
- Introduction of additional variable \rightarrow symmetrical matrices $\ddot{\phi} = P$
- The final homogeneous equations governing simulation:

$$\begin{bmatrix} M+M^* & 0 & -C+JC'\\ 0 & 0 & -A(\Omega_L/\Omega_T)\\ -C+JC' & -A(\Omega_L/\Omega_T) & -(1-J)G \end{bmatrix} \begin{bmatrix} \ddot{X}_S\\ \ddot{P}\\ \ddot{\varphi} \end{bmatrix} + \begin{bmatrix} K & 0 & 0\\ 0 & A(\Omega_L/\Omega_T) & 0\\ -0 & 0 & 0 \end{bmatrix} \begin{bmatrix} X_S\\ P\\ \varphi \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$$

Acceptable computational cost for whole-core simulation (~several hours)

MECHANICAL TEST SCENARIOS

Injection of 100 L at the bottom of core.

→ Injection time 0.05 s
→ Located at central fuel assembly
→ Simulation time of 0.25 s

Weak seismic excitation

- \rightarrow Frequency of 1 Hz
- \rightarrow Amplitude around ~1 cm or less
- \rightarrow Acceleration applied to all elements
- \rightarrow Simulation time of 0.8 s

DE LA RECHERCHE À L'INDUSTR

MECHANICAL RESULTS: LIQUID INJECTION

Variation of fuel volume

Radial displacements of assemblies (compression – red, departure – green)

Time steps of 0.025s \rightarrow

Grzegorz KĘPISTY | PAGE 10

Cea

MECHANICAL REULTS: LIQUID INJECTION (2)

Pressure variation in system

Displacement of assemblies at the top

DE LA RECHERCHE À L'INDUSTRI

MECHANICAL REULTS: SEISMIC EXCITATION

Variation of fuel volume

Horizontal displacement of assemblies (left – red, right – green)

Time steps of 0.1s \rightarrow

Cea

MECHANICAL REULTS: SEISMIC EXCITATION (2)

Pressure variation in system

Displacement of assemblies at the top

- I. Mechanical calculation
 - I.1. Numerical and physical model
 - I.2. Mechanical test scenarios
- **II.** Neutronic simulation
 - **II.1. Description of diffusion neutron solver**
 - **II.2.** Results power evolution in system
- **III.** Summary and prospects for the upcomming studies

Neutron transport simplified to multigroup diffusion equation (Fick's law)

Time evolutionTransport/
diffusionremoval
removal $-\frac{1}{V^g} \frac{\partial \phi^g(x)}{\partial t} = \nabla (D^g(x) \nabla \phi^g(x)) - \sigma^g_{disp}(x) \phi^g(x) + \sum_{g' \neq g} \sigma^{g' \to g}_s(x) \phi^{g'}(x) + \chi^g_p(x)(1-\beta) \sum_{g'} v \sigma^{g'}_f(x) \phi^{g'}(x) + \sum_{l} \chi^g_l \lambda_l C^l_l.$ Transfer/arrivalFission productionDelayed neutrons

- Equation above for each energy group of neutrons
- + Set of equations for precursor concentrations

CAST3M NEUTRONIC TOOL (2)

The novelty of the CNT concerns direct treatment of geometry displacements

- The CNT has been validated with static Monte Carlo simulations using TRIPOLI4 and for keff differences up to several hundreds pcm.
- Comparable simulations for full-core models were done using APOLLO3
- Set of parametric studies suggest generally correct behavior of result

One way coupling with mechanical simulation

End-of-step displacements are transfered to neutron diffusion calculations

Parametric study helped to optimize the length of time step for CNT

DE LA RECHERCHE À L'INDUSTRIE

NEUTRON DIFFUSION RESULTS – FLUID INJECTION

Power evolution during neutronic transient...

Point injection 100 L - Power variation з Change of power in system 1,5 1,5 2,0 Caste... 0 0,1 0,2 0 0,05 0,15 0,25 Time (s) Point injection 100 L - Fuel zone variation 1,0% 0,8% Relative variation of core volume - dV/V - point. 0,6% 0,4% 0,2% 0,0% 0,1 0,2 0,05 -0,2% -0,4% -0,6% -0,8% Time (s)

... strongy correlated with variation of active volume

DE LA RECHERCHE À L'INDUSTRIE

NEUTRON DIFFUSION RESULTS – SEISMIC EXCITATION

Power evolution during neutronic transient...

... strongy correlated with variation of active volume

- I. Mechanical calculation
 - I.1. Numerical and physical model
 - I.2. Mechanical test scenarios
- **II.** Neutronic simulation
 - **II.1.** Description of diffusion neutron solver
 - **II.2.** Results power evolution in system

III. Summary and prospects for the upcomming studies

- Structure mechanics models were used together with neutronic models in Cast3M.
- New methodology for neutron-mecanics linking for Sodium Fast Reactors was established, validated and tested.

Cast3M Neutronic Tool stands as a general tool for a large variety of mechanical excitations and short scenarios.

- CNT is useful for current and upcomming safety assessments concerning Gen4 systems and framework of ASTRID Project.
- Code is currently intensively applied to model various scenarious for better understanding of core behavior

PROSPECTS FOR FUTURE DEVELOPMENT

FSI:

- Taking into account steady state movement of the fluid
- Applying turbulent flow models for the liquid sodium

Structure mechanics:

- Adding verical (Z) degree of freedom to mechanical model of solid

Neutronics

Improving neutron diffusion model

Thank you for attention