

Fissuration en milieux isotrope et orthotrope via les intégrales invariantes: prise en compte des effets environnementaux

<u>R. Moutou Pitti^{1,2}, H. Riahi^{1,2}, F. Dubois³, N. Angellier³, A. Châteauneuf^{1,2}</u>

¹Clermont Université, Université Blaise Pascal, Institut Pascal, **CLERMONT-FERRAND**, France ²CNRS, Institut Pascal, AUBIERE, France ³University of Limoges, Heterogeneous Material research Group, **EGLETONS**, France

This work is sponsored by French National Research Council through the ANR JCJC Project CLIMBOIS N° ANR-13-JS09-0003-01 and Labelled by ViaMeca

rostand.moutou pitti@univ-bpclermont.fr

iaMéca

AGENCE NATIONALE DE LA RECHERC

Club Cast3M 2014 28 Novembre 2014, Paris, France

Outline

- Path independent integrals formulation (J, M, A)
- 2 Validation on elastic isotropic material
- 3 Generalization to elastic orthotropic material
- 4 Generalization to viscoelastic material
- 5 Conclusions and perspectives

Intégrale J Intégrale M Intégrales T et A

Intégrale J Intégrale M Intégrales T et A

(1) and Green-Ostrogradsky theorem's

$$J = \int_{\Gamma} \left[\omega(\varepsilon_{ij}) n_1 - \sigma_{ij} n_j u_{i,1} \right] dl \implies G_{\theta} = \int_{V} \left(-p_{jk} \theta_k \right)_j dV = \int_{V} \left[-\omega \theta_{k,k} + \sigma_{ij} u_{i,k} \theta_{k,j} \right] dV$$

Intégrale J Intégrale M Intégrales T et A

Energy release rate
$$J = G = \frac{K_I^2 + K_{II}^2}{E'} \begin{cases} E' = E & plan \sigma \\ E' = E/(1 - \nu^2) & plan \epsilon \end{cases}$$

Fracture modes separation

$$G_I = \frac{K_I^2}{\kappa}$$
 $G_{II} = \frac{K_{II}^2}{\kappa}$
 $u = u_I + u_{II}$
 $\int_{Z} \sigma$
 $\sigma = \sigma_I + \sigma_{II}$
 Mode I

M-integral

Noether theorem's

$$\delta L = \int_{V} \delta \omega (\varepsilon_{ij}^{u}, \varepsilon_{ij}^{v}) dV = 0$$
Real fields(FEM)

$$\varepsilon_{ij}^{u} = \frac{1}{2} (u_{i,j} + u_{j,i})$$

$$\sigma_{ij}^{u} = \lambda \, \delta_{ij} u_{k,k} + \mu (u_{i,j} + u_{j,i})$$

M-integral formulation

$$M = \int_{\Gamma} \frac{1}{2} \left[\sigma_{ij,1}^{v} u_{i} - \sigma_{ij}^{u} v_{i,1} \right] n_{j} dl$$
$$M_{\theta} = \int_{V} -\frac{1}{2} \left[\sigma_{ij,1}^{v} u_{i} - \sigma_{ij}^{u} v_{i,1} \right] \theta_{1,j} dV$$

Bilinear expression of the strain energy density $\omega(\varepsilon_{ij}^{u}, \varepsilon_{ij}^{v}) = \frac{1}{2}\lambda \varepsilon_{kk}^{u} \varepsilon_{hh}^{v} + \mu \varepsilon_{ij}^{u} \varepsilon_{ij}^{v}$

Virtual fields (auxiliary problem)

$$\varepsilon_{ij}^{\nu} = \frac{1}{2} (v_{i,j} + v_{j,i})$$

$$\sigma_{ij}^{\nu} = \lambda \, \delta_{ij} v_{k,k} + \mu (v_{i,j} + v_{j,i})$$

Relation between M-integral and SIF K_I et K_{II}

$$M = \frac{K_I^u K_I^v + K_{II}^u K_{II}^v}{E'}$$
$$(K_I^v = 1, K_{II}^v = 0) \Longrightarrow K_I^u$$
$$(K_I^v = 0, K_{II}^v = 1) \Longrightarrow K_{II}^u$$

Path independent integrals formulation Intégrale J Validation on elastic isotropic material Intégrale M Generalization to elastic orthotropic material Intégrales T et A Generalization to viscoelastic material Conclusions / perspectives $\Delta T = T - T_0$ T and A integrales *Temperature variation* Bilinear expression of the strain energy density Noether theorem's $\delta L = \int_{U} \delta \omega \left(\varepsilon_{ij}^{u}, \varepsilon_{ij}^{v}, \Delta T \right) dV = 0 \qquad \omega \left(\varepsilon_{ij}^{u}, \varepsilon_{ij}^{v}, \Delta T \right) = \frac{1}{2} \lambda \varepsilon_{kk}^{u} \varepsilon_{hh}^{v} + \mu \varepsilon_{ij}^{u} \varepsilon_{ij}^{v} - \beta \Delta T \varepsilon_{hh}^{v}$ **Real fields(FEM)** Virtual fields (auxiliary problem) $\varepsilon_{ij}^{v} = \frac{1}{2} \left(v_{i,j} + v_{j,i} \right)$ $\varepsilon_{ij}^u = \frac{1}{2} \left(u_{i,j} + u_{j,i} \right)$ $\sigma_{ij}^{u} = \lambda \, \delta_{ij} u_{k,k} + \mu (u_{i,j} + u_{j,i})$ $T^{u} = \Delta T = T - T_{0}$ $\sigma_{ij}^{\nu} = \lambda \, \delta_{ij} v_{k,k} + \mu \big(v_{i,j} + v_{j,i} \big)$ $T^{v} = 0$ **T-integral formulation** $T = \int_{-\frac{1}{2}} \left[\sigma_{ij,1}^{v} u_{i} - \sigma_{ij}^{u} v_{i,1} - \gamma \Delta T (v_{1,j} - \psi_{1,j}) + \gamma \Delta T_{j} (v_{1} - \psi_{1}) \right] n_{j} dl$ A-integral formulation

$$A = T_{\theta} = \int_{V} -\frac{1}{2} \left[\sigma_{ij,1}^{v} u_{i} - \sigma_{ij}^{u} v_{i,1} - \gamma \Delta T \left(v_{1,j} - \psi_{1,j} \right) + \gamma \Delta T_{,j} (v_{1} - \psi_{1}) \right] \theta_{1,j} dV$$

$$A_{l}: Classical term \qquad A_{2}: temperature variation effect$$

Intégrale J Intégrale M Intégrales T et A

Intégrale J Intégrale M Intégrales T et A

Improvement of the A-integral formulation

 $A = T_{\theta} = \int_{V} -\frac{1}{2} \left[\sigma_{ij,1}^{v} u_{i} - \sigma_{ij}^{u} v_{i,1} - \gamma \Delta T (v_{1,j} - \psi_{1,j}) + \gamma \Delta T_{,j} (v_{1} - \psi_{1}) \right] \theta_{1,j} dV$ $A_{i}: Classical term \qquad A_{2}: temperature variation effect$ $-\int_{A_{1}A_{2}+B_{2}B_{1}} T_{i} v_{i,j} \theta_{j} dx_{1}$ $A_{3}: effect of pressure applied on the crack lips$ $-\int_{V} \left[\sigma_{ij,k}^{v} u_{i,j} + \sigma_{ij,k}^{u} v_{i,j} + \beta \delta_{ij} u_{i,jk} \Delta T \right] \theta_{k} dV$ $A_{4}: effect of crack growth$

8

Mode I Mixed mode (I and II) Axisymmetric Pressure on crack lips Thermal load

Mode I

(c)

Mode I Mixed mode (I and II) Axisymmetric Pressure on crack lips Thermal load

Mixed mode (I and II)

Rectangular plate with central inclined crack subjected to a tensile stress (a) – Geometry and loads, (b) – Finite elements mesh, (c) – Deformed shape

Results for plan stress condition

$K_I (MPa\sqrt{mm})$			
Analytical	FEM	Ecart %	
4,247	4,257	0,2	

$K_{II} (MPa\sqrt{mm})$			
Analytical	FEM	Ecart %	
2,877	2,913	1,2	

Mode I Mixed mode (I and II) Axisymmetric Pressure on crack lips Thermal load

Axisymetric problem

Mode I Mixed mode (I and II) Axisymmetric Pressure on crack lips Thermal load

Thermal load

Mode I Mixed mode (I and II) Axisymmetric Pressure on crack lips Thermal load

Pressure on the crack lips

Analytical

17,725

FEM

17,544

Ecart %

1

Path independence verification of (a) – the energy release rate G_{l_1} (b) – the stress intensity factor K_{l_1}

Mode I Mixed mode (I and II) Axisymmetric Pressure on crack lips Thermal load

Effect of thermal load and pressure on the crack lips

- (a) Temperature field distribution,
- (b) (b) Path independence verification of the stress intensity factor K_1

$$T_0 = 0^{\circ}C \text{ à } T_1 = 30^{\circ}C$$

Orthotropic fields Virtual fields CTS specimen Independence domain

Generalization to elastic orthotropic material

Plan strain condition

$$\begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ 2\varepsilon_{12} \end{bmatrix} = \begin{bmatrix} (1 - v_{31}v_{13})/E_1 & -(v_{12} + v_{13}v_{32})/E_1 & 0 \\ -(v_{12} + v_{13}v_{32})/E_1 & (1 - v_{23}v_{32})/E_2 & 0 \\ 0 & 0 & 1/G_{12} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix} + \begin{bmatrix} (v_{31}\alpha_3 + \alpha_1)\Delta T \\ (v_{32}\alpha_3 + \alpha_2)\Delta T \\ 0 \end{bmatrix}$$

$$Hyp1: \gamma = f(E_p v_{12}, \alpha_p)$$

$$A = T_{\theta} = \int_{V} -\frac{1}{2} \begin{bmatrix} \sigma_{ij,1}^{\nu} u_i - \sigma_{ij}^{u} v_{i,1} \\ -\frac{1}{2} \begin{bmatrix} \sigma_{ij,1}^{\nu} u_i - \sigma_{ij}^{u} v_{i,1} \\ A_j: Classical term \\ -\int_{A_1A_2 + B_2B_1} T_i v_{i,j} \theta_j dx_1 \\ A_j: effect of pressure applied on the crack lips \end{bmatrix} - \int_{V} \begin{bmatrix} \sigma_{ij,k}^{\nu} u_{i,j} + \sigma_{ij,k}^{u} v_{i,j} \\ -\int_{V} \begin{bmatrix} \sigma_{ij,k}^{\nu} u_{i,j} + \sigma_{ij,k}^{u} v_{i,j} \\ A_j: effect of crack growth \end{bmatrix} \theta_k dV$$

Path independent integrals formulation Orthotropic fields Validation on elastic isotropic material Virtual fields Generalization to elastic orthotropic material CTS specimen Independence domain Generalization to viscoelastic material Conclusions / perspectives Virtual fields computation Orthotropic material $c_{16} = c_{26} = 0$ Anisotropic material $c_{11}\mu^4 - 2c_{16}\mu^3 + (2c_{12} + c_{66})\mu^2 - 2c_{26}\mu + c_{22} = 0$ R $\sigma_{22}^v \downarrow \sigma_{12}^v$ $\sigma_{22}^v \bullet \sigma_{12}^v$ x_2 *Compliance matrix* σ_{11}^v σ_{11}^v $\begin{bmatrix} \mathbf{C} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & c_{16} \\ c_{12} & c_{22} & c_{26} \\ c_{16} & c_{26} & c_{66} \end{bmatrix}$ x_1 Crack Crack E_1 $R_{crack} \neq R_{orthotropy}$ $R_{crack} \equiv R_{orthotropy}$ Case VI Case I Case II Case III $\mu_1' = \frac{\mu_1 \cos \theta - \sin \theta}{\cos \theta + \mu_1 \sin \theta}$ $\mu_1 = i \sqrt{\sqrt{B}} \qquad \mu_1 = i \sqrt{-A + i \sqrt{A^2 - B}}$ $\mu_1 = i \sqrt{A + \sqrt{A^2 - B}}$ $\mu_2 = -\Re[\mu_1] + i\Im[\mu_1]$ $\mu_2' = \frac{\mu_2 \cos \theta - \sin \theta}{\cos \theta + \mu_2 \sin \theta}$ $\mu_2 = \mu_1$ $\mu_2 = i \sqrt{A - \sqrt{A^2 - B}}$

Orthotropic fields Virtual fields CTS specimen Independence domain

Virtual fields computation

Virtual displacement field

$$\boldsymbol{v_1} = \sqrt{\frac{2r}{\pi}} \operatorname{Re} \left[\frac{K_I}{\mu_1 - \mu_2} (\mu_1 p_2 \sqrt{z_2} - \mu_2 p_1 \sqrt{z_1}) + \frac{K_{II}}{\mu_1 - \mu_2} (p_2 \sqrt{z_2} - p_1 \sqrt{z_1}) \right]$$
$$\boldsymbol{v_2} = \sqrt{\frac{2r}{\pi}} \operatorname{Re} \left[\frac{K_I}{\mu_1 - \mu_2} (\mu_1 q_2 \sqrt{z_2} - \mu_2 q_1 \sqrt{z_1}) + \frac{K_{II}}{\mu_1 - \mu_2} (q_2 \sqrt{z_2} - q_1 \sqrt{z_1}) \right]$$

Orthotropic fields Virtual fields CTS specimen Independence domain

Virtual fields computation

Virtual stress field

$$\sigma_{11}^{\nu} = \sqrt{\frac{1}{2\pi r}} \operatorname{Re} \left[\frac{K_{I}\mu_{1}\mu_{2}}{\mu_{1} - \mu_{2}} \left(\frac{\mu_{2}}{\sqrt{z_{2}}} - \frac{\mu_{1}}{\sqrt{z_{1}}} \right) + \frac{K_{II}}{\mu_{1} - \mu_{2}} \left(\frac{\mu_{2}^{2}}{\sqrt{z_{2}}} - \frac{\mu_{1}^{2}}{\sqrt{z_{1}}} \right) \right]$$

$$\sigma_{22}^{\nu} = \sqrt{\frac{1}{2\pi r}} \operatorname{Re} \left[\frac{K_{I}}{\mu_{1} - \mu_{2}} \left(\frac{\mu_{1}}{\sqrt{z_{2}}} - \frac{\mu_{2}}{\sqrt{z_{1}}} \right) + \frac{K_{II}}{\mu_{1} - \mu_{2}} \left(\frac{1}{\sqrt{z_{2}}} - \frac{1}{\sqrt{z_{1}}} \right) \right]$$

$$\sigma_{12}^{\nu} = \sqrt{\frac{1}{2\pi r}} \operatorname{Re} \left[\frac{K_{I}\mu_{1}\mu_{2}}{\mu_{1} - \mu_{2}} \left(\frac{1}{\sqrt{z_{1}}} - \frac{1}{\sqrt{z_{2}}} \right) + \frac{K_{II}}{\mu_{1} - \mu_{2}} \left(\frac{\mu_{1}}{\sqrt{z_{1}}} - \frac{\mu_{2}}{\sqrt{z_{2}}} \right) \right]$$

Orthotropic fields Virtual fields CTS specimen Independence domain

Validation on CTS (Compact Tension Shear) specimen

Mesh of the CTS specimen

Parameters

$$E_1 = 600 MPa$$
 $E_2 = 15000 MPa$ $G_{12} = 700 MPa$

Orthotropic fields Virtual fields CTS specimen Independence domain

Numerical results for stress intensity factors without thermal load

Opening mode

Shear mode

Orthotropic fields Virtual fields CTS specimen Independence domain

Numerical results for stress intensity factors with thermal load

- (a) Opening mode K_I,
- (b) (b) Shear mode K_{II}

- (a) Opening mode K_I,
- (b) Shear mode K_{II}

Analytical Formulation Fracture parameters Incremental formulation Viscoelastic SIF factors

Paramètres de rupture dans le cas viscoélastique

Facteur d'inténsité de contraintes

Mode I

Mode II

Taux de restitution d'énergie viscoélastique

$${}^{1}G\theta_{v}^{(p)} + {}^{2}G\theta_{v}^{(p)} = C_{1}^{(p)} \cdot \frac{\left({}^{u}K_{I}^{(p)}\right)^{2}}{8} + C_{2}^{(p)} \cdot \frac{\left({}^{u}K_{II}^{(p)}\right)^{2}}{8} \quad \text{with}$$

$${}^{1}G_{v} = \sum_{p} {}^{1}G\theta_{v}^{(p)} \text{ and } {}^{2}G_{v} = \sum_{p} {}^{2}G\theta_{v}^{(p)} \quad p \in \{0,1,...N\}$$

Analytical Formulation Fracture parameters Incremental formulation Viscoelastic SIF factors

Formulation incrémentale en fluage

Décomposition du tenseur de déformation

$$\Delta \varepsilon_{ij}(t_{n+1}) = \Psi_{ijkl} \cdot \Delta \sigma_{kl}(t_{n+1}) + \tilde{\varepsilon}_{ij}(t_n) \longrightarrow \text{Histoire du chargement}$$

Matrice des matérieux

Equation d'équilibre

$$K_T^p \cdot \left\{ \Delta u^p \right\}(t_n) = \left\{ \Delta F_{ext}^p \right\}(t_n) + \left\{ \tilde{F}^p \right\}(t_{n-1})$$

Analytical Formulation Fracture parameters Incremental formulation Viscoelastic SIF factors

Numerical results for stress intensity factors

Opening mode

Shear mode

- 1. Improve the analytical formulation of T and A integrales
 - a. Temperature variation effect
 - b. Pressure on crack lips
 - c. Crack growth process
- 2. Generalization for orthotropic material
- 3. Generalization for viscoelastic material
- 3. Implementation in FE software
 - a. Accurate results
 - b. Integration domain independency
- A. Moisture variation and mechanosorptive law
- B. Viscoelastic crack growth using mixed mode process zone
- C. Reliability assessment (uncertainties)

Fissuration en milieux isotrope et orthotrope via les intégrales invariantes: prise en compte des effets environnementaux

<u>R. Moutou Pitti^{1,2}, H. Riahi^{1,2}, F. Dubois³, N. Angelier³, A. Châteauneuf^{1,2}</u>

¹Clermont Université, Université Blaise Pascal, Institut Pascal, **CLERMONT-FERRAND**, France ²CNRS, Institut Pascal, AUBIERE, France ³University of Limoges, Heterogeneous Material research Group, **EGLETONS**, France

This work is sponsored by French National Research Council through the ANR JCJC Project CLIMBOIS N° ANR-13-JS09-0003-01 and Labelled by ViaMeca

rostand.moutou pitti@univ-bpclermont.fr

iaMéca

AGENCE NATIONALE DE LA RECHERC

27

Club Cast3M 2014 28 Novembre 2014, Paris, France