Modélisation des écoulements dans un réseau discret de fractures par une approche continue

A. Fourno, C. Grenier, F. Delay, H. Benabderrahmane, B. Noetinger

R03 Fourno et. al. Club CAST3M 11/2012

Ē

Geological context

→Complex geological structures
→Different Rock types
→High heterogeneities (porosity, permeability)

Fractured reservoir

Some reservoirs present complex fracture network

Local scale (well)

Field scale

Energies nouvelles

Faults and structural maps

© IFP

Flow simulation model : equivalent properties

Reservoir modeling softwares don't model flow on discrete fracture network.

Equivalent flow properties have to be computed for each cell

From M. Verscheure PHD work (2010)

Goal : to propose a new equivalent permeability

Flow:
$$\vec{q} = -k.\vec{\nabla}h$$

Some comments

To correctly take into account a fracture, a full tensor have to be used by cells

Nevertheless

If the dip or azimuth is closed to 0,
 K can be approximated by a diagonal tensor.

Smeared Fractures This work was initiated by CEA (DEN/DM2S/MTMS)

> The idea behind this approach is to represent a fracture network by heterogeneous properties on a regular mesh

> > Z

Ly

 $\overline{\overline{K}}_{SF} = \begin{bmatrix} K_1^{SF} & 0 \\ 0 & K_2^{SF} \\ 0 & 0 \end{bmatrix}$

х

Lх

0

0

 K_2^{SF}

Energies 10uvelles

• Two sets of cell are identified

© IFP

Equivalent permeability K_{MHFE}

$$Q_i = \int K.\vec{\nabla}h.\vec{n}_i.\partial s \rightarrow Q_i = \bar{h}_i \sum_j M_{ij}^{-1} - \sum_j M_{ij}^{-1} Th_j$$

• Mixed and Hybrid Finite Element scheme (MHFE) Flow

2D: equivalent permeability K_{MHFE}

The flow balance give the equivalent permeability

3D fracture mesh

$$Q_{1}^{MHFEX} = \Delta .K_{1} .\Delta h \longleftrightarrow Q_{1}^{ref, X} = \frac{a}{c_{n}} \frac{\cos \theta}{\cos \beta} .k. \Delta h$$
$$Q_{2}^{MHFEX} = \Delta .K_{2} .\Delta h \longleftrightarrow Q_{2}^{ref, X} = \frac{a}{c_{n}} \frac{\cos \beta}{\cos \theta} .k. \Delta h$$

$$N = \frac{\tan \beta}{\tan \theta}$$
$$c_n = (\cos^2 \beta + \sin^2 \beta \cos^2 \theta)^{\frac{1}{2}}$$

$$\sum_{Q_{2}^{MHFE,Y}} C \text{ Cells (blue)}$$

$$Q_{2}^{MHFE,Y} = -\frac{3}{4} N \cdot \Delta \cdot K_{2} \cdot \Delta h$$

$$Q_{1}^{MHFE,Y} = -\frac{2K_{2}}{(N+1-\frac{2}{3N})K_{2} + \frac{4}{3N}K_{1}} \cdot \Delta \cdot K_{1} \cdot \Delta h$$

$$C = -\frac{1}{N} \frac{\cos \theta}{\cos \beta} \cdot a \cdot k \cdot \Delta h$$

$$C = -\frac{1}{N} \frac{\cos \theta}{\cos \beta} \cdot a \cdot k \cdot \Delta h$$

A 3D equivalent permeability

$$\overline{\overline{K}}_{SF} = \begin{bmatrix} K_1^{SF} & 0 & 0 \\ 0 & K_2^{SF} & 0 \\ 0 & 0 & K_2^{SF} \end{bmatrix}$$

$$\begin{array}{c|c} \mathbf{S} \\ \mathbf{Cells} \\ \mathbf{K}_{1}^{SF} = \frac{\cos\theta}{c_{n}\cos\beta}\frac{a}{\Delta}k \\ \mathbf{K}_{2}^{SF} = \frac{\cos\beta}{c_{n}\cos\theta}\frac{a}{\Delta}k \\ \mathbf{K}_{3}^{SF} = K_{2}^{Sf} \\ \hline \mathbf{C} \\ \mathbf{Cells} \\ \mathbf{K}_{1}^{SF} = \frac{\cos\theta}{c_{n}\cos\beta}\frac{(1+\frac{\tan\theta}{\tan\beta}-\frac{2}{3}\frac{\tan^{2}\theta}{\tan^{2}\beta})}{(2-\frac{\sin^{2}\theta}{\sin^{2}\beta})\frac{a}{\Delta}k} \\ \mathbf{K}_{2}^{SF} = \frac{4}{3}\frac{\cos\beta}{c_{n}\cos\theta}\frac{a}{\Delta}k \\ \mathbf{K}_{3}^{SF} = K_{2}^{Sf} \\ \hline \mathbf{C} \\ \mathbf{C$$

© IFP

Validation case

Sensitivity study on the dip and azimuth value. Numerical and analytical equivalent permeabilities are compared

- Single fracture : dip and strike
- Regular fracture network : cubic element size

Precision of the results : single fracture

As attempted, error depends on dip and strike values due to extra diagonal terms that are neglected in our approach

Precision of the results : regular fracture network

Huge and minor connectivity changes due to the spatial cell size

© IFP

Conclusions

☆ Performance of the method

- → Fractured media mesh easily obtained
- → Quick results and low computer cost (coarse discretizations)
- → Precision depends on head gradient orientation, discretization.

⑦ Modeler point of view

 \rightarrow For huge fracture density, weak space discretization have to be required (increase the computer cost).

 \rightarrow The number of cell required is frequently an handicap

Perspectives

Perspectives :

- → Reduce the number of cells
- → Simulations of transfers in the fractured media
- → Benchmark

Approche « explicite optimisée » MD, NK,[1] (100 mailles)

Approche « Voxel » AF et al., (10⁶ mailles)

Approche « explicite fin » AF et al. [2] (2.10⁵ mailles)

> :S :S

- [1] N. Khvoenkova & M. Delorme (2011), méthode pour construire le maillage d'un réseau de fractures a partir de diagrammes de voronoï,FR11/01.686
 - [2] A. Fourno, B. Noetinger, C. La Borderie. Publication prévue
- [3] G. Pichot, J. Erhel and J. R. de Dreuzy, A mixed hybrid Mortar method for solving flow in discrete fracture networks, Applicable Analysis An International Journal, 89 Issue 10, 1629, doi:10.1080/00036811.2010.495333

Approche extérieure

- 2012. A. Fourno, C. Grenier, F. Delay, H. Benabderrahmane. A continuum voxel approach to model flow in 3D fault networks: a new way to obtain up-scaled hydraulic conductivity tensors of grid cells. Accepté dans Journal Of Hydology.
- 2011. A. Fourno, C. Grenier, F. Delay, H. Benabderrahmane. A novel and efficient 3D fracture continuum model for flow in fracture networks. MAMERN11: 4th International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources. Saidia (Morocco).
- 2007. A. Fourno, C. Grenier, F. Delay and H. Benabderrahmane. Development and qualification of a smeared fracture modelling approach for transfers in fractured media. Grounwater in fractured rocks, IAH selected papers volume 9, section 6; Numerical modelling of fractured environment.
- 2005. A. Fourno, directeur de thèse F. Delay, responsable C. Grenier. Modélisation multi-échelles de l'écoulement et du transport dans un milieu granitique ; application au site d'Äspö en Suède. Thèse financée par l'ANDRA et effectuée au CEA/DEN dans le laboratoire de Modélisation des Transferts en Milieux Solides.

© IFP

R03 Fourno et. al. Club CAST3M 11/2012

Spatial sensitivity study

The DFN was generated using J.R. de Dreuzy tools

© IFP

21

Spatial sensitivity study Equivalent permeability tensor

Δ (m)	Equivalent permeability K (mD)			Diagonal tensor (mD) Kmin Kmax Kz		
0.007	313.37	-88.67	-36.6	211		
	-56.381	289.64	-174.20		374	
	-38.72	41.92	540.78			559
0.01	320	-90	-37.5	218		
	-56.5	298.6	-173.5		382	
	-37.7	42	548			566
0.02 cell number (1.628.973)	351	-92	-43	243		
	-57	326	182		413	
	-37	35	580			601
0.04	386	-115	74	296		
	-53	425	166		491	
	-45	33	633			657
0.08	590	-59	-14	495		
	-35	533	-175		615	
	-9	54	821			833

Fracture conductivities Cf = 1000 mD.m

R03 Fourno et. al. Club CAST3M 11/2012

Spatial sensitivity study sensitivity analysis

23