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Objectives

Objectives

The present work is about vertical duct flows in laminar mixed convection, with symmetric UWT
(Uniform Wall Temperature) boundary conditions.

It concerns:

I the definition of the appropriate reference length scales (Lx and Ly ), on the basis of the scale
and phenomenological analyses

I the identification of the correct buoyancy parameter GrDh
/ReDh

, obtained from the
dimensionless form of governing equations

I a comprehensive analysis of the friction and heat transfer coefficients (f (y)ReDh
and Nu(y)),

velocity and temperature boundary layers, performed with the Cast3m code

I the verification of the validity of the Reynolds analogy also in mixed convection
configuration, supported by an approach based on the ratio between mixed and forced
velocity boundary layers

I the definition of a novel diagram of the flow reversal occurrence, in the (GrDh
/ReDh

)crit vs
PeDh

coordinates, using Pr as parameter
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The vertical parallel plates channel

Governing equations, geometry and
boundary conditions
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The vertical parallel plates channel The governing equations

The Boussinesq’s equations

The 2D governing equations are written in the elliptic form, under the Boussinesq approximation
hypotheses:
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The vertical parallel plates channel Geometry and boundary conditions

6

?

L

-�
b

-�
b

66666

6
666

6

Inlet

VJ , TJ

Outlet

v(x), TW

Axis Wall

TW

?

-g

-

6
y

x

-
6
v

u

2b = Dh/2

Boundary conditions (2D configuration)

I Inlet: 0 ≤ x < b, y = 0:

u = 0 T = TJ

v = VJ

I Wall: x = b, 0 ≤ y ≤ L:

u = 0 T = TW

v = 0

I Axis: x = 0, 0 ≤ y ≤ L:

u = 0
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I Outlet: 0 ≤ x < b, y = L:
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= 0 p = p0
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Characteristic length scales

The identification of length scales
for mixed convection in duct flows
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Characteristic length scales The scale analysis

The scale analysis

We can identify immediately the transversal reference length scale Lx with the hydraulic diameter
Dh, which concerns the width between the vertical plates.

Lx = Dh (5)

The identification of the longitudinal reference length scale Ly is a more sensitive task: we began
by writing the scale analysis for the continuity equation:

∂u

∂x
+
∂v

∂y
= 0 ⇒

u

Dh
∼

VJ

Ly
(6)

The energy conservation equation gives:
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«
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∆T

D2
h
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�
�
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∆T

L2
y

(7)

By expliciting Dh from eq. 7:

Dh ∼ Ly Re
−1/2
Ly

Pr−1/2 (8)
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Characteristic length scales The scale analysis

The scale analysis (2)

The relation between the Reynolds number based on Ly and on Dh is:

ReDh
=

ReLy Dh

Ly
(9)

After the substitution of the Reynolds number, we obtain:„
Ly

DhReDh
Pr

«−1/2

∼ 1 ⇒ Ly = DhReDh
Pr (10)

The scale analysis leads to the definition of the reference length scales:

Lx = Dh and Ly = DhReDh
Pr (11)

More useful informations can be achieved from the phenomenological analysis.
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Characteristic length scales The phenomenological analysis

The phenomenological analysis
If we suppose to introduce a finite Heavyside temperature disturbance in the duct flow, after a

time τdif =
1

α0

„
Dh

2

«2

, the heat transfer by means of molecular diffusion has affected a fluid

portion inside a radius equal to the distance between the plates 2b = Dh/2.

In the same time τdif the injection point will have travelled in the stream direction at an
advective length equal to `adv = VJτdif .

By recalling the Reynolds number based on Dh, that is ReDh
=

VJ Dh

ν0
, we write:

`adv =

„
Dh

4

«„
VJ Dh

ν0

«„
ν0

α0

«
⇒ `adv = 0.25DhReDh

Pr (12)

In a duct length equal to `adv , the information of the thermal boundary condition, imposed on
each wall, has propagated through the flow to the opposite wall: in this sense, beyond `adv the
thermal developed regime has been achieved (thermalization of the flow).

By virtue of the meaning of the advective length `adv , we define it as the asymptotic thermal
length Lth

∞ (all the figures in the following are based on this length):

Lth
∞ = 0.25DhReDh

Pr (13)

and again, we identify the longitudinal reference length Ly , as:

Ly = DhReDh
Pr (14)
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Dimensionless equations based on the asymptotic thermal length Lth
∞

The dimesionless form of
the governing equations
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Dimensionless equations based on the asymptotic thermal length Lth
∞ Dimensionless coordinates, velocities, temperature and pressure

The dimensionless governing equations

After the definition of the reference length scales Lx = Dh and Ly = DhReDh
Pr , we can write the

dimensionless form of the governing equations, based on the asymptotic thermal length Lth
∞:

X =
x

Lx
=

x

Dh
and Y =

y

Ly
=

y

DhReDh
Pr

(15)

The continuity equation gives the expression of the transversal velocity u.

∂u

∂x
+
∂v

∂y
= 0 ⇒

u

Dh
∼

VJ

DhReDh
Pr

that is u ∼
α0

Dh
(16)

Dimensionless velocities, temperature and pressure are:

ũ =
uDh

α0
ṽ =

v

VJ
Θ =

T − TJ

TW − TJ
p̃′ =

p′

%0V 2
J

(17)
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∞ Dimensionless coordinates, velocities, temperature and pressure

The dimensionless governing equations

After the definition of the reference length scales Lx = Dh and Ly = DhReDh
Pr , we can write the

dimensionless form of the governing equations, based on the asymptotic thermal length Lth
∞:

X =
x

Lx
=

x

Dh
and Y =

y

Ly
=

y

DhReDh
Pr

(15)

The continuity equation gives the expression of the transversal velocity u.

∂u
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∂y
= 0 ⇒

u

Dh
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VJ

DhReDh
Pr
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α0

Dh
(16)

Dimensionless velocities, temperature and pressure are:

ũ =
uDh
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ṽ =

v
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Θ =
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J
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Dimensionless equations based on the asymptotic thermal length Lth
∞ The buoyancy parameter GrDh

/ReDh

The dimensionless governing equations (2)

Finally, the dimensionless set of equations for laminar mixed convection in duct flows is:

∂ũ

∂X
+
∂ṽ

∂Y
= 0 (18)

ũ
∂ũ

∂X
+ ṽ

∂ũ

∂Y
= Pr

∂2ũ

∂X 2
+

„
1

Re2
Dh

Pr

«
∂2ũ

∂Y 2
−
`
Re2

Dh
Pr2
´∂p̃′

∂X
(19)

ũ
∂ṽ

∂X
+ ṽ

∂ṽ

∂Y
= Pr

∂2ṽ

∂X 2
+

„
1

Re2
Dh

Pr

«
∂2ṽ

∂Y 2
−
∂p̃′

∂Y
−
„

GrDh

ReDh

«
Pr Θ (20)

ũ
∂Θ

∂X
+ ṽ

∂Θ

∂Y
=

∂2Θ

∂X 2
+

„
1

Re2
Dh

Pr2

«
∂2Θ

∂Y 2
(21)

The buoyancy parameter GrDh
/ReDh

represents the amount of the natural convection with
respect to the forced convection, or equivalently the ratio between the natural to forced velocities.

GrDh

ReDh

=

„
gβ∆TD3

h

ν2

«„
ν

VJ Dh

«
=

„
gβ∆TD2

h

ν

«
1

VJ
=

Vnat

VJ
(22)
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Dimensionless equations based on the asymptotic thermal length Lth
∞ Other dimensionless forms based on different reference lengths

A comprehensive review of other literature dimensionless forms of equations, based on different
definitions of Ly , is reported in the present work, but they seem not to be consistent with the
physical problem under exam.

I Dimensionless form based on the hydraulic diameter Dh:

Lx = Dh and Ly = Dh (23)

This leads to a different buoyancy parameter GrDh
/Re2

Dh
= RiDh

, which is appropriate only

for boundary-layer flows, but not for duct flows.

I Dimensionless form based on the velocity entry length Lv
E (

):
Lx = Dh and Ly = DhReDh

(24)

This approach takes into account the developing only of the velocity field, as it were not
coupled with temperature (forced convection); although it leads to the correct buoyancy
parameter GrDh

/ReDh
for mixed convection, the subsequent evaluation of the fully developed

flow length is erroneous (compare Lv
E vs Lth

∞ in the following figures).
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Dimensionless equations based on the asymptotic thermal length Lth
∞ Other dimensionless forms based on different reference lengths

A comprehensive review of other literature dimensionless forms of equations, based on different
definitions of Ly , is reported in the present work, but they seem not to be consistent with the
physical problem under exam.

I Dimensionless form based on the hydraulic diameter Dh:

Lx = Dh and Ly = Dh (23)

This leads to a different buoyancy parameter GrDh
/Re2

Dh
= RiDh

, which is appropriate only

for boundary-layer flows, but not for duct flows.

I Dimensionless form based on the velocity entry length Lv
E (1):

Lx = Dh and Ly = DhReDh
(24)

This approach takes into account the developing only of the velocity field, as it were not
coupled with temperature (forced convection); although it leads to the correct buoyancy
parameter GrDh

/ReDh
for mixed convection, the subsequent evaluation of the fully developed

flow length is erroneous (compare Lv
E vs Lth

∞ in the following figures).

1The velocity entry length Lv
E is the distance from the inlet section where the velocity boundary layers δv interact on the axis,

and the velocity achieves the 99% of the fully developed parabolic profile.

Marco Pieri (CEA-UNIPI) - Laminar mixed convection in vertical parallel plates channels with symmetric UWT boundary conditions - 26/11/2009



Forced convection Velocity and temperature fields
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Mixed convection Velocity and temperature fields
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Mixed convection Relation between forced and mixed convection

Relation between forced and mixed convection

MIXED CONVECTIONz }| {
Buoyancy-aided C.Buoyancy-opposed C.

FORCED C.

H
HH ��

�
-

0 GrDh

ReDh

In mixed convection, the flow is subject to a temperature gradient and to a buoyancy force
proportional to density variation (due to the thermal and gravitational fields).
The ligther density layers assume the ascensional motion respect to the colder ones which flow
downward; depending on the sign of the temperature difference ∆T , this driving force can act in
the same direction of inertial forces (BA convection) or in opposed direction (BO convection).

Aided case, BA: the upward buoyancy forces recall and accelerate the flow in a squeezed region
between the boundary layer and an impairment velocity zone which appears in
the center of the duct, due to the conservation of the mass balance.

Opposed case, BO: the downward buoyancy forces counteract the ascending motion in vicinity of
the walls, and require the flow to deflect and to accelerate in the bulk region.

Flow reversal phenomenon occurs both in BA and BO cases, when buoyancy intensity is larger
than the critical value, identified by the (GrDh

/ReDh
)crit value. Flow reversal means that, locally,

the fluid flows in the opposite direction respect to the imposed velocity VJ .
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Mixed convection The buoyancy-aided flow

Buoyancy-aided convection
The critical buoyancy parameter in aided convection has been numerically found equal to
(GrDh

/ReDh
)BA

crit = 2400, conferming the value obtained by Desrayaud and Lauriat (2009).
We report the velocity (I) and temperature (I) profiles for different sections (from the inlet to the
outlet), for the case 3(GrDh

/ReDh
)BA

crit , with the occurrence of flow reversal in the bulk region.

x/b

v(x/b)/VJ

Θ(x/b)
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Buoyancy-aided convection Velocity boundary layer

The velocity field
In buoyancy-aided convection, the velocity gradient at the wall

„
∂v(x)

∂x

«
W

is enhanced due to

the acceleration of the hot and lighter layers (buoyancy forces acting in the same direction with
respect to the upward flow).
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Buoyancy-aided convection Friction factor times Reynolds number

Friction factor times Reynolds number
The friction factor f (y) is subsequently enhanced in buoyancy-aided convection, because:

f (y) =
2τW (y)

%0V 2
J

=

„
2ν0

V 2
J

«
∂v(x , y)

∂x

˛̨̨̨
W

(25)

It is here reported the plot of the local friction factor times Reynolds number f (y)ReDh
for the

forced and BA convection cases.
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Buoyancy-aided convection Nusselt Number

Nusselt Number
Due to the flow acceleration, the colder advective region (velocity peak) is in intimate shearing
contact with the hotter transversal diffusive region at the wall. The convective heat coefficient
h(y), and the Nusselt number Nu(y) = h(y)Dh/κ0, are therefore enhanced.

Nu(y) =
hDh

κ0
=

Dh
∂T (x , y)

∂x

˛̨̨̨
W`

TW − Tb(y)
´ where Tb(y) is the bulk mean temperature (26)
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Buoyancy-opposed convection

Mixed convection:
Buoyancy-opposed convection
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Buoyancy-opposed convection

Buoyancy-opposed convection
The critical buoyancy parameter in opposed convection has been numerically found equal to
(GrDh

/ReDh
)BO

crit = −465; no comparison with previous works is possible, with the exception of
Ingham (1988) which uses the parabolic formulation.
We report the velocity (I) and temperature (I) profiles for different sections (from the inlet to the
outlet), for the case 3(GrDh

/ReDh
)BO

crit , with the occurrence of flow reversal in the wall region.
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Buoyancy-opposed convection Velocity profiles

The velocity field
In buoyancy-aided convection, the velocity gradient at the wall

„
∂v(x)

∂x

«
W

is smooth due to the

impairment of the cold and heavier layers (buoyancy forces acting in the opposite direction with
respect to the upward flow).
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Buoyancy-opposed convection Friction factor times Reynolds number

Friction factor times Reynolds number
The friction factor f is impaired in BO convection.
It is here reported the plot of the local friction factor times Reynolds number f (y)ReDh

for the
forced and BO convection cases.
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Buoyancy-opposed convection Nusselt Number

Nusselt Number
Due to the flow impairment, it occurs that a large thermal diffusion region is present near to the
wall. The convective heat exchange, evaluated by the h(y) coefficient, or by the Nusselt number
Nu(y) = h(y)Dh/κ0, is therefore impaired.
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BA and BO comparison

BA and BO comparison
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BA and BO comparison Local friction factor times Reynolds and Nusselt number

Local friction factor times Reynolds and Nusselt number
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The BA curves (III) for f (y)ReDh
and Nu(y) are similar, due to the validity of the Reynolds

analogy, verified for mixed convection in the present work with a proposed correlation based on
the velocity boundary layers ratio.

For the BO curves (III) the minimum value of the Nusselt ratio (local minimum heat exchange) is
located at those Y the correspondent friction factor ratio has an inflection point (local minumum
wall friction); on the other hand, the friction factor ratio has a minimum value (local maximum
wall friction) occurs where the correspondent Nusselt ratio has an inflection point (local
maximum heat exchange).
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BA and BO comparison Centerline velocity and temperature

Centerline velocity and temperature
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The BA convection cases (III) show an impairment of the axial velocity, which reaches 0 for the
critical buoyancy parameter value (I), and becomes negative for supercritical values. Note the
presence of the stagnation region, i.e., v = 0 (I).
The dimensionless centerline temperature Θ(Y ) is globally developed in a shorter distance.

In the BO convection (III), the presence of recirculation cell, near to the walls, constraints the
flow to accelerate in the bulk, thus the axial velocity reaches high values in the developing region.
Axial temperature (I) is affected at Y coordinate smaller than for BA convection. This is due the
advective recirculation flow, which takes place from the wall to the bulk, but this advance does
not prevent the thermal developing from being globally retarded and impaired.
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The BA convection cases (III) show an impairment of the axial velocity, which reaches 0 for the
critical buoyancy parameter value (I), and becomes negative for supercritical values. Note the
presence of the stagnation region, i.e., v = 0 (I).
The dimensionless centerline temperature Θ(Y ) is globally developed in a shorter distance.

In the BO convection (III), the presence of recirculation cell, near to the walls, constraints the
flow to accelerate in the bulk, thus the axial velocity reaches high values in the developing region.
Axial temperature (I) is affected at Y coordinate smaller than for BA convection. This is due the
advective recirculation flow, which takes place from the wall to the bulk, but this advance does
not prevent the thermal developing from being globally retarded and impaired.
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Flow reversal regime diagram

Flow reversal regime diagram
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Flow reversal regime diagram

Flow reversal regime diagram

The flow reversal regime diagram reports the critical buoyancy parameter values, as a function of
the PeDh

and using Pr as a parameter.
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The Reynolds analogy The Reynolds analogy in forced convection

The Reynolds analogy in forced convection
The relation between the fluid friction and heat transfer, for Pr ∼ 1 fluids, is given as:

(fReDh
)FC = 3.183(Nu)FC where 3.183 =

f∞ReDh

Nu∞
=

24

7.54
(27)

The relations between the friction and heat transfer rates and the velocity and temperature
boundary layers are:

f =
τW

1
2
%0V 2

J

= −
ν0
∂v
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˛̨̨̨
W

1
2

V 2
J

∼
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VJ

δv

V 2
J

=
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VJδv
= Re−1
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(28)

h =
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κ0
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˛̨̨̨
W

TW − Tb
∼

κ0
∆T

δT

∆T
=
κ0

δT
(29)

It follows that:

fReDh
∼

Dh

δv
and Nu ∼

Dh

δT
(30)

According to the Reynolds analogy theory, (fReDh
)FC ∼ (Nu)FC implies that:„

1

δv

«
FC

∼
„

1

δT

«
FC

(31)

Therefore, the Reynolds analogy in forced convection is fundamentally based on the analogy
between velocity and temperature boundary layers.
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The Reynolds analogy The Reynolds analogy in mixed convection

The Reynolds analogy in mixed convection
From the analysis of the velocity boundary layer, we made the following hypothesis on the
dependency of the friction factor:

(fReDh
)MC

(fReDh
)FC
∼

(δv )FC

(δv )MC
(32)
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The Reynolds analogy The Reynolds analogy in mixed convection

The Reynolds analogy in mixed convection (2)

And then we verified
(fReDh

)MC

(fReDh
)FC
∼

(δv )FC

(δv )MC
:
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The Reynolds analogy The Reynolds analogy in mixed convection

The Reynolds analogy in mixed convection (3)
On the other hand, the local Nusselt number ratio seems not to be a function of the temperature
boundary layers ratio:

indeed, for undercritical buoyancy, the temperature boundary δT remains similar to the forced
case (II), whereas for critical and supercritical buoyancy, it almost concides with the recirculation
cell bounds (III).
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The Reynolds analogy The Reynolds analogy in mixed convection

The Reynolds analogy in mixed convection (4)
Therefore, from the forced convection Reynolds analogy equation (fReDh

)FC = 3.183(Nu)FC , and

the correlation for the friction factor ratio
(fReDh

)MC

(fReDh
)FC
∼

(δv )FC

(δv )MC
, the following correlation for the

mixed convection Reynolds analogy is proposed:

(fReDh
)MC

(δv )MC

(δv )FC
= 3.183(Nu)MC (33)

The following figures report the verification of the Reynolds analogy for mixed convection using
the proposed correlation based on the velocity boundary layers ratio, at different values of
buoyancy:
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The Reynolds analogy The Reynolds analogy in mixed convection

The Reynolds analogy in mixed convection (5)
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Conclusions

Contributions of the present work

I In this work, the laminar mixed convection in parallel plates channels is studied by means of
the scale and phenomenological analyses.

I The appropriate characteristic length scales for duct flows are found, and subsequently used
in the dimensionless form of the governing equations.

I The obtained buoyancy parameter GrDh
/ReDh

allows to describe the amount of the natural
convection with respect to the forced convection.

I A series of numerical simulations with Cast3M code is performed for the buoyancy-aided and
buoyancy-opposed convection: a comprehensive analysis of the friction and heat transfer
coefficients, velocity and temperature fields, has led to a deeper undestanding of the
phenomena, and of the flow reversal characteristics, as a function of the buoyancy parameter.

I The validity of the Reynolds analogy also in mixed convection configuration has been
verified, supported by an original approach based on the ratio between mixed and forced
velocity boundary layers.

I A novel diagram of the flow reversal occurrence is reported, in the (GrDh
/ReDh

)crit vs PeDh

coordinates, using Pr as parameter.
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Conclusions

Work scenario

This fundamental study actually is orientated at a theorical and phenomenological studies frame,
whose main objective is the turbulent mixed convection flow : in fact, almost all nuclear
convective applications involve turbulent flows.

The UWT boundary condition has been choosed as starting point because it offers more
possibilities of future developments, in the direction of nuclear waste cooling (UHF) but also in
the direction of containment atmoshpere mixing (UWT).

Different geometries could be addressed in future works.

Parallel Plates Heat Transfer Heat and Mass Transfer

Channel UHF UWT UWT

LAMINAR Nuclear wastes Present work Containment

FLOW cooling • atmoshpere mixing

TURBULENT Nuclear wastes Containment

FLOW cooling Future work atmoshpere mixing
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Conclusions

Velocity and temperature boundary layers
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Conclusions

Hydrodynamic
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The Boussinesq’s approximation is applied under the hypotheses that the variations of pressure
and temperature are limited and restrained around a reference state (T0, p0):

p0 = Patm and T0 =
TW + TJ

2
.

I All physical properties are evaluated at the reference state, with the only exception of density
% in the gravitational term:

% = %0; µ = µ0; cp = cp0 ; κ = κ0; ν = ν0 =
µ0

%0
; α = α0 =

κ0

%0cp0

.

I The density %(p,T ), in the gravitational term, is replaced by the Boussinesq’s density

%Bo = %0 − %0β0(T − T0), where β = −
1
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I The pressure gradient is explicited as ∇p = ∇p′ +∇ph = ∇p′ + %0~g

I The gravitational terms are combined together and rewritten as −%0β0(T − T0)~g .
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I The unsteady and the advective terms of the continuity equations are indepedently null:
∂%0

∂t
= 0;

∂%0

∂x
=
∂%0

∂y
= 0; (material incompressibility)

I The material incompressibility implies the flow incompressibility : % = %0 ⇒ ∇ · ~u = 0

I The divercence part of the viscosity term in the momentum conservation equations is null
because of the flow incompressibility.

I The steady state of the governing equations requires all the time derivatives to be null.

I The pressure advection and the viscous dissipation terms are negligible, as hypotheses.

I ...finally the Boussinesq’s equations are found...
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The Boussinesq’s equations The verification of the consistency of the Boussinesq’s approximation

The Boussinesq’s equations
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= 0 (40)
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u
∂T

∂x
+ v

∂T

∂y
= α0

„
∂2T

∂x2
+
∂2T

∂y2

«
(43)

In order to identify the validity region of the Boussinesq’s approximation, we have to validate the
consistency of the following hypotheses :

I the substitution of %(p,T ) = %0 + %′ + %h = %0[1 + (χp′ − βT ′) + χph] with the constant
density %0;

I the neglecting of the pressure advection and the viscous dissipation terms.
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The Boussinesq’s equations The verification of the consistency of the Boussinesq’s approximation

We obtain 4 conditions (see rapport for passages):

a:
∆T

T0
� 1 b:

L

T0
�

R

g
c:

L

T0
�

cp0

g
d:

L

T0
�

∆T

T0

cp0

g

I a:
∆T

T0
� 1

The temperature variation is small with respect to the reference temperature: the density
variation due to the thermal expansion is negligible.

I b:
L

T0
�

R

g

The variations of density, due to the fluid compressibility under the hydrostatic action, is
negligible with respect to the effects of temperature on density

I c:
L

T0
�

cp0

g

The effects of hydrodynamic pressure variations on the temperature fields are negligible.

I d:
L

T0
�

∆T

T0

cp0

g

The hydrostatic effects on temperature field are negligible (condition on the minumum
vertical temperature gradient).
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The Boussinesq’s equations The validity region of the Boussinesq’s approximation
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