SALOME platform Overview

SALOME facilitates creation of industrial simulation applications for different technological domains

The Open Source Platform for

What is SALOME?

Numerical Simulation

Integration

The S

The SALOME platform:

- supports interoperability between CAD modeling and computation software (CAD-CAE Link),
- makes easier the integration of new components for numerical computation,
- puts priority on coupling between computation software,
- provides a generic user interface, user-friendly and efficient, which helps reducing the costs and delays of carrying out the studies,
- reduces training time to the specific time for learning the software solution which has been based on this platform.

Main functions of the platform

SALOME functionality allows to:

- Define geometrical models (create/modify geometrical items), import and export them using the IGES and STEP formats.
- Define meshing of these geometrical items, import and export them
- Handle physical properties and quantities attached to geometrical items, import and export them in a reusable format.
- Perform computations using a solver (not provided in the platform): read input data, configure the solver, and write a result field (scalar or vectorial).
- Visualize result fields in 3D, 2D and export images of their visualization in an appropriate format.
- Manage study schemes: definition, save/restore.
- Manage computation schemes: definition, execution.

Modules of the platform

KERNEL component

The Kernel layer provides numerous general services. It consists of two main parts - STUDY, which implements the generic persistence and document management, and Applicative Interface (IAPP), which provides generic GUI functionality.

STUDY

The module **STUDY** provides to the user the whole set of functions available to carry out a document (study). A study is made of data of one (or several) components. Several studies can be opened at the same time; but only one study is active at a given instant The functions of the STUDY module:

The functions of the STOD

- ✓ Create new document
- ✓ Save documents
- ✓ Open saved on disk documents

- √ Load/Unload an existing document
- √ SaveAs a document
- ✓ Copy/Paste objects
- ✓ **Properties** of the document (author, creation date, modifications ...)

IAPP

The module IAPP provides generic GUI services through main **Desktop** where other components integrate their own GUI controls.

Desktop contains different functions which are used by custom components:

- ✓ Three kinds of viewers, two 3D (OpenCASCADE and VTK based) and one 2D (QWT based) with the following list of functions:
 - · Zoom, Rotate, Pan
 - · Fit, Rectangle Fit,
 - Scaling (linear, logarithmic)
 - Predefined views (top, bottom, left ...)
 - · General **selection** of objects
 - Snapshots of the view
 - Settings for the viewer
- ✓ Object browser which visualizes the tree structure of a document and provides the selection mechanism
- ✓ Python console
- ✓ Message console, where each component can put messages
- ✓ Preferences menus with saving/loading user predefined settings
- ✓ Window management, creation of new windows, arranging existing
- ✓ Help menu, where each component puts its own help guides in HTML format

GEOM component

This component provides a list of functions for working with CAD models and adopts it for meshing algorithms.

The list of functions of this component:

- √ Visualization of models in 3D viewers
 - Shading mode
 - · Wireframe mode
 - · Pre-highlighting
 - Selection
 - Changing color of a model
 - Display/Erase a model
- ✓ Import/Export CAD models in the following formats:
 - **IGES** 5.3
 - STEP AP203/214 schemas
 - BREP (OpenCASCADE internal format)
- Creation of basic geometrical objects:
 - · Point
 - · Line
 - · Circle
 - · Ellipse
 - · Arc
 - Vector
 - · Plane
- ✓ Creation of primitives:

- Box
- · Cylinder
- · Sphere
- · Torus
- · Cone
- ✓ Modeling operations:
 - Extrusion
 - · Revolution
 - · Filling
 - Pipe creation
 - Offset
- √ Basic Sketcher
- ✓ Creation of topological objects
 - Vertex
 - Edge
 - · Wire
 - Face
 - · Shell
 - · Solid
 - · Compound
- Explode of topological objects
- ✓ Boolean operations
 - Fuse
 - · Common
 - · Cut
 - · Section
- ✓ Transformation operations with objects
 - · Translation
 - · Rotation
 - Mirror
 - Scaling
 - · Multi translation
 - Multi rotation
- Advanced partition/gluing algorithm with support of material assignment
- Creation of planes using the Archimedean law
- ✓ Local operations
 - · Fillets
 - · Chamfer
- ✓ Shape healing functions
 - Sewing
 - Changing of face orientation
 - · Suppressing hole
 - · Suppressing face
- ✓ Topological information and dimensions
 - Basic properties (length, surface area, volume)
 - · Center of gravity
 - Axis of inertia
 - · Bounding box

- · Minimal distance
- Tolerance of the shape
- Validity of the shape
- · Topological information

MESH component

The goal of this module is creation of meshes on the basis of geometrical models created or imported into GEOM. It uses a set of meshing algorithms and the corresponding conditions (hypotheses) to compute meshes. A new mesher can be easily connected to this module using the existing plugin mechanism.

The function list of this component:

- ✓ Visualization of the mesh in 3D viewer:
 - · Shading
 - · Wireframe
 - · Shrink
 - Nodes
 - Special options for mesh (color, lines width, shrink coefficient)
 - Displaying/Erasing of mesh and submeshes

- Average length of edges
- Number of segments
- · Maximal triangle area
- Maximal tetrahedron or hexahedron volume

- · Wire discretization
- · Triangulation (Mefisto2d)
- · Quadrangle (mapping)
- · Hexahedron (I,j,k)

✓ Group management

- Creation of groups of elements
- Add/Remove elements from a group
- · Remove a group
- · Display/Erase a group
- Selection of groups
- Highlighting of groups

- ✓ Import/Export
 - · MED
 - UNV
- ✓ Quality controls of meshes
 - · Length of edges
 - · Free boundaries
 - · Boundaries of multi-connections
 - · Area
 - · Taper
 - Aspect Ratio
 - · Minimum angle
 - Warp

- · Skew
- ✓ Mesh modifications
 - · Add/Remove node, edge, triangle, quadrangle
 - · Diagonal inversion
 - · Changing orientation
 - · Conversion of group of triangles into quadrangles
 - · Conversion of group of quadrangles into triangles
 - Moving of node

VISU component

The goal of this module is visualization of results of solver computations. It's a classical post-processing module, which provides a wide range of functions for visualization of results.

The function list of this module:

- ✓ **Visualization** of the presentations in different modes in 3D viewer:
 - Shading
 - Wireframe
 - · Shrink
 - · Nodes
 - Insidewireframe
 - Special options for presentation (color, lines width, shrink coefficient)
 - Displaying/Erasing of presentations
- ✓ **Visualization** of 2D presentations (curves) in 2D viewer
 - **Different style** of curves
 - Different scaling modes
 - Auto or user defined legend
- ✓ Import MED files
- Import/Export ASCII files of special format for curve representation
- ✓ Creation of 3D representations of results:
 - · Scalar map
 - · Deformed shape
 - · Vector representations
 - · Iso surfaces
 - · Cut planes
 - Cut lines
 - · Stream lines
 - Different options for presentations listed above
 - Creation 2D data from 3D presentations
- Physical animation of the presentation in time
- √ Visualization of tables
- ✓ Creation of curves from tables
- ✓ Creation of containers of the curves
- ✓ **Information** about values on cells
- Creating/storing special view parameters (angle, zoom coefficient ...)

SUPERVISOR component

This aim of this module is building and execution of computation procedures. A computation procedure represents an object, which can define a sequence or a coupling between several computation software solvers. It uses a distributed schema of calculation, which means that each numerical component can be located on different computers with different operation systems.

The functions of this module are:

- ✓ Creation of a dataflow
- √ Import/export a dataflow into xml file

- Edit a dataflow
 - Add a node into a dataflow
 - **Remove** a node from a dataflow
 - Connect nodes in a dataflow
 - Change node information
 - Rename a node
 - Put results of a computation into the study
- Different presentation views of a dataflow
 - **Control view**
 - **Full view**
 - Table view
- **Execution** of a dataflow
 - Run execution
 - **Suspend** execution
 - Kill dataflow execution
 - Step-by-step execution

Different kinds of nodes

- Factory nodes (distributed services)
- **Inline** nodes (python based)
 - Computation node
 - Switch node
 - Loop node
 - GoTo node

On going developments

SALOME is developed with a RNTL project with more than 20 partners from which CEA DEN and EDF R&D. Here is an abstract from the development plan:

- √ KERNEL component
 - **DumpPython** functionality for writing automation scripts from GUI
 - Optimization of CORBA calls using embedded servers
- **GEOM** component
 - **GEOM groups**
 - Local coordinate system and transformation based on it
- **MESH** component
 - Modification of mesh
 - **Remuneration** nodes and elements
 - **Smoothing**
 - Visualization
 - Clipping plane type of visu (to see internal structure of volume mesh)
 - Mesher plugin
 - Plugin for tetrahedron commercial mesher
 - Extrusion of 1D and 2D mesh
 - Using hypothesizes on geom groups
 - Filters and group management
 - Library of user defined filters
 - Filter of mesh elements on geometry
 - Operation on groups union, intersection, cut
 - Interfaces
 - Plugin approach for mesh interfaces
 - **NASTRAN** interface
 - Abaqus interface
- **VISU** component
 - Display of special presentation atomic configuration
- SUPERVISOR component
 - Macro node sub graph implementation
 - MPI container for parallel computing

